【總結】1第六章多元函數(shù)微分學DxyzOM?xyP),(yxfz?2偏導數(shù)與全微分復合函數(shù)與隱函數(shù)的微分法多元函數(shù)的連續(xù)性隱函數(shù)存在定理第六章多元函數(shù)微分學多元函數(shù)多元函數(shù)的極限方向導數(shù)與梯度多元函數(shù)的微分中值定理與泰勒公式極值問題3第一節(jié)、
2025-02-21 16:07
【總結】1第九章多元函數(shù)微分學(下)21、設空間曲線的方程)1()()()(????????tztytx???ozyx(1)式中的三個函數(shù)均可導.第六節(jié)偏導數(shù)在幾何上的應用M?.),,(0000tttzzyyxxM
2025-05-03 22:04
【總結】返回后頁前頁導數(shù)是微分學的核心概念,是研究函數(shù)§1導數(shù)的概念一、導數(shù)的概念化率”,就離不開導數(shù).三、導數(shù)的幾何意義二、導函數(shù)態(tài)的有力工具.無論何種學科,只要涉及“變與自變量關系的產(chǎn)物,又是深刻研究函數(shù)性返回返回后頁前頁一、導數(shù)的
2025-08-12 19:14
【總結】定義含有未知函數(shù)的導數(shù)或微分的方程,稱為微分方程.未知函數(shù)是一元函數(shù)的微分方程,稱為常微分方程.微分方程中出現(xiàn)的未知函數(shù)導數(shù)(或微分)的最高階數(shù),稱為微分方程的階.一階微分方程的一般形式為0),,(??yyxF.基本概念例如,都是一階微分方程.22xyyy???
2024-10-19 13:27
【總結】多元函數(shù)微分學的幾何應用1空間曲線的切線與法平面曲面的切平面與法線多元函數(shù)微分學的幾何應用全微分的幾何意義小結思考題作業(yè)第8章多元函數(shù)微分法及其應用多元函數(shù)微分學的幾何應用2設空間曲線的方程)1()()()()(??????????
2025-05-15 10:10
【總結】多元函數(shù)微分法講義第十章多元函數(shù)微分學§ 多元函數(shù):一、平面點集1、定義:把全體有序實數(shù)對組成的集合,稱為二維空間,記為(或),(實際上這里的二維空間的概念就是解析幾何中的二維空間概念)。下面我們看一看這里的二維空間有一個什么樣的幾何意義,顯然都唯一對應著直角坐標平面的一個點,反之然,∴中的有序數(shù)對與直角平面上的點是一一對應的,它們的本質(zhì)是一樣的,
2025-04-17 00:25
【總結】返回后頁前頁§4高階導數(shù)當我們研究導函數(shù)的變化率時就產(chǎn)生了高階導數(shù).如物體運動規(guī)律為,()sst?它的運動速度是,而速度在時刻()vst??()()().atvtst?????t的變化率就是物體在時刻的加速度t返回返回
2025-08-02 10:51
【總結】第二章導數(shù)與微分?導數(shù)的概念?函數(shù)的和、差、積、商的求導法則?復合函數(shù)的求導法則?隱函數(shù)的導數(shù)?初等函數(shù)的導數(shù)?﹡導數(shù)的經(jīng)濟定義?高階導數(shù)?函數(shù)的微分下頁1.導數(shù)的定義2.導數(shù)的幾何意義3.可導與連續(xù)的關系首頁上頁下頁
2024-09-28 14:11
【總結】導數(shù)的定義0()yfxx?設函數(shù)在點的某定義:個鄰域內(nèi)0,(xxx?有定義當自變量在處取得增量點0),xxy??仍在該鄰域內(nèi)時相應地函數(shù)取得00()();yfxxfxyx???????增量如果與之0,()xyfx?
2025-08-05 04:41
【總結】設空間曲線的方程)1()()()(????????tztytx???ozyx(1)式中的三個函數(shù)均可導.一、空間曲線的切線與法平面M?.),,(0000tttzzyyxxM??????????對應于;),,,(0000ttzyxM?對應于設
2025-01-19 14:36
【總結】第一篇:多元函數(shù)微分學 多元函數(shù)的極限與連續(xù) 一、平面點集與多元函數(shù) (一)平面點集:平面點集的表示:E={(x,y)|(x,y)滿足的條件}.: ⑴全平面和半平面:{(x,y)|x30},{...
2024-11-15 03:05
【總結】第一篇:多元函數(shù)微分學復習 第六章多元函數(shù)微分學及其應用 多元函數(shù)的基本概念一、二元函數(shù)的極限 定義f(P)=f(x,y)的定義域為D,oP0(x0,y0),對于任意給定的正數(shù)e,總存在正數(shù)d,...
2024-11-09 17:26
【總結】第八章多元函數(shù)微分法及其應用上冊研究了一元函數(shù)微分法,利用這些知識,我們可以求直線上質(zhì)點運動的速度和加速度,也可以求曲線的切線的斜率,可以判斷函數(shù)的單調(diào)性和極值、最值等,但這遠遠不夠,因為一元函數(shù)只是研究了由一個因素確定的事物。一般地說,研究自然現(xiàn)象總離不開時間和空間,確定空間的點需要三個坐標,所以一般的物理量常常依賴于四個變量,在有些問題中還需要考慮更多的變量,這樣就有必要研究多
2025-06-18 08:16
【總結】反射光線的方向取決于入射點和該點處的切線.從橢圓的一個焦點發(fā)出的光線經(jīng)橢圓反射后必經(jīng)過另一個焦點.§1導數(shù)1.切線問題第二章一元函數(shù)微分學零.引例?因而切線MT的斜率為00)()(tanxxxfxf????,)()(limtan
2024-12-08 01:11
【總結】二、可微的條件一、全微分的概念多元函數(shù)的全微分方向導數(shù)與梯度第三節(jié)第十一章三、方向導數(shù)和梯度一元函數(shù)y=f(x):)()(xfxxfy?????xxfy???)(d(當一元函數(shù)y=f(x)可導時)二元函數(shù)z=f(x,y):)(xoxA?
2025-07-23 18:41