【總結(jié)】第五章相似矩陣及二次型§1向量的內(nèi)積、長度及正交性定義:設(shè)有n維向量令則稱[x,y]為向量x和y的內(nèi)積.1122[,]nnxyxyxyxy????向量的內(nèi)積1122,,nnxyxyxyxy????
2024-12-08 01:18
【總結(jié)】上頁下頁鈴結(jié)束返回首頁1線性代數(shù)上頁下頁鈴結(jié)束返回首頁2線性代數(shù)緒論上頁下頁鈴結(jié)束返回首頁3問題:1、什么是線性代數(shù)?2、為什么要學(xué)線性代數(shù)?3、怎么做才能學(xué)好線性代數(shù)?上頁下頁鈴結(jié)束返回首頁4一、什么是線性代數(shù)?(
2025-01-14 18:09
【總結(jié)】利用范德蒙行列式計算例計算利用范德蒙行列式計算行列式,應(yīng)根據(jù)范德蒙行列式的特點(diǎn),將所給行列式化為范德蒙行列式,然后根據(jù)范德蒙行列式計算出結(jié)果。.333222111222nnnDnnnn?????????,于是得到增至冪次數(shù)便從則方若提取各行的公因子,遞升至而是由
2025-04-30 05:22
【總結(jié)】《線性代數(shù)》習(xí)題答案習(xí)題一一、填空題1、82、1或-23、?????????????????????600012600166203212134、1?5、0??6、2121?
2024-09-04 21:16
【總結(jié)】第一篇:線性代數(shù)習(xí)題答案 習(xí)題三(A類) =(1,1,0),α2=(0,1,1),α3=(3,4,0).求α1-α2及3α1+:α1-α2=(1,1,0)-(0,1,1)=(1,0,-1),3α1...
2024-11-09 22:39
【總結(jié)】第一篇:線性代數(shù)習(xí)題答案 、=2,s=5,t=8或r=5,s=8,t=2或r=8,s=2,t==2,j=;a13a25a32a44a51;;當(dāng)k為偶數(shù)時,排列為偶排列,當(dāng)k為奇數(shù)時,(1)1;(2)...
2024-11-09 12:06
2025-05-01 22:18
【總結(jié)】2022-2022-1線性代數(shù)期末考試試卷(A卷)一、單項(xiàng)選擇(20分=4分?5):1.112233440000()00ababbaba?(A)12341234aaaabbbb?,(B)12341234aaaa
2025-01-09 01:17
【總結(jié)】第2章矩陣矩陣的概念??定義1由個數(shù)按一定順序排成行列的數(shù)表稱為一個行列矩陣,簡稱矩陣,記為或,其中表示位于
2024-10-19 01:08
【總結(jié)】1§矩陣§逆矩陣§初等矩陣§矩陣可逆的充分必要條件第二章矩陣代數(shù)2§矩陣矩陣的加法與數(shù)乘同型矩陣:兩個行數(shù)和列數(shù)均分別相等的矩陣.定義矩陣的相等:如果兩個矩陣是同型的(只有兩個同型的矩陣才能
2025-01-19 15:17
【總結(jié)】第一章行列式二階、三階行列式一、計算下列行列式1、2、3、二、解方程1、解:計算行列式得,因此2、解:計算行列式得,得,因此n階行列式定義及性質(zhì)一、計算下列行列式1、2、3、4、5、將第2、3、4列乘以-1加到第一列得6、將第2、3、4行全部加到第1行將第1行乘以-1加到第2
2025-01-07 21:45
【總結(jié)】上頁下頁結(jié)束返回首頁1線性代數(shù)上頁下頁結(jié)束返回首頁2線性代數(shù)上頁下頁結(jié)束返回首頁3第一講n階行列式的定義上頁下頁結(jié)束返回首頁4第一章行列式在初等數(shù)學(xué)中,我們用代入消元法或加減消元法求解二元和三元線性方程組,可以
2025-01-19 15:16
【總結(jié)】Chapter4(1)正交矩陣與正交變換教學(xué)要求:1.了解正交變換與正交矩陣的概念以及它們的性質(zhì)..正交矩陣的定義與性質(zhì)一.正交變換二.正交矩陣的定義與性質(zhì)一1.定義.,正交矩陣為則稱滿足階方陣若AEAAAn??2.性質(zhì);1)1(??A.)1,1,(2?????
2025-02-19 06:24
【總結(jié)】第3次課§克萊姆法則目的要求:?1、掌握克萊姆法則解線性方程組?2、應(yīng)用拉普拉斯定理計算行列式?3、第一章習(xí)題小結(jié)在§,我們知道二元線性方程組當(dāng)系數(shù)行列式0D?時有唯一解,這個結(jié)論可推廣到n元線性方程組定理若線性方程組????
【總結(jié)】線性代數(shù)(同濟(jì)五版)第一章第二章第三章第四章第五章第六章第一章返回第二章返回
2025-02-21 12:43