【總結(jié)】《線性代數(shù)》期終試卷3(3學(xué)時(shí))一、填空題(15’):1.設(shè)向量組,它的秩是(),一個(gè)最大線性無(wú)關(guān)組是().2.已知矩陣和相似,則x=().3.設(shè)是秩為的矩
2025-01-09 10:36
【總結(jié)】第一篇:08線性代數(shù)試題 08-09學(xué)年線性代數(shù)試題 一、填空題(每小題2分,共10分) 1、設(shè)a1,a2,a3均為3維列向量,記B=(a1,2a2+3a1,4a3-a2+a1),若|A|=2,...
2024-11-15 07:12
【總結(jié)】第一篇:自考線性代數(shù)試題 全國(guó)2010年10月高等教育自學(xué)考試 線性代數(shù)(經(jīng)管類)試題課程代碼:04184說(shuō)明:在本卷中,AT表示矩陣A的轉(zhuǎn)置矩陣,A*表示矩陣A的伴隨矩陣,E是單位矩陣,|A|表...
2024-11-15 22:57
【總結(jié)】第一篇:線性代數(shù)較難試題 一、設(shè)A相似于對(duì)角陣,l0是A的特征值,: (1)秩(A-l0I)=秩(A-l0I)2;(2)不存在Y,使得(A-l0I)Y=:(1)設(shè)A則A-l0I故L=diag{l0...
2024-11-15 22:51
【總結(jié)】第一篇:線性代數(shù)試題(B) (101)北京理工大學(xué)遠(yuǎn)程教育學(xué)院2007-2008學(xué)年第一學(xué)期 《線性代數(shù)》期末試卷(A卷) 教學(xué)站學(xué)號(hào)姓名成績(jī) 一.填空題(每小題4分,共20分) ?x1??...
2024-11-19 02:44
【總結(jié)】《線性代數(shù)》期終試卷2(2學(xué)時(shí))本試卷共八大題一、是非題(判別下列命題是否正確,正確的在括號(hào)內(nèi)打√,錯(cuò)誤的在括號(hào)內(nèi)打×;每小題2分,滿分20分):1.若階方陣的秩,則其伴隨陣。()2.若矩陣和矩陣滿
【總結(jié)】考研試題(線性代數(shù))部分匯編05年一、選擇題(11)設(shè)是矩陣A的兩個(gè)不同的特征值,對(duì)應(yīng)的特征向量分別是,則線性無(wú)關(guān)的充分必要條件是( ?。?。(A) (B) ?。–) ?。―)(12)設(shè)A為n階可逆矩陣,交換A的第一行與第二行得到矩陣B,分別是矩陣A,B
2025-03-25 07:24
2025-01-06 17:50
【總結(jié)】《線性代數(shù)》期終試卷1(2學(xué)時(shí))本試卷共七大題一、填空題(本大題共7個(gè)小題,滿分25分):1.(4分)設(shè)階實(shí)對(duì)稱矩陣的特征值為,,,的屬于的特征向量是,則的屬于的兩個(gè)線性無(wú)關(guān)的特征向量是();2.(4分)
2025-01-06 17:51
【總結(jié)】線性代數(shù)期末試卷共19頁(yè)第19頁(yè)2011-2012-2線性代數(shù)46學(xué)時(shí)期末試卷(A)考試方式:閉卷考試時(shí)間:一、單項(xiàng)選擇題(每小題3分,共15分),齊次線性方程組僅有零解的充分必要條件是的(A).()列向量組線性無(wú)關(guān),
2025-06-28 21:47
2025-01-09 10:37
【總結(jié)】線性代數(shù)魏福義,黃燕蘋(píng)主編?北京:中國(guó)農(nóng)業(yè)出版社,2022.2(ISBN7109-08058-7)習(xí)題解(缺習(xí)題六題解)06學(xué)年第二學(xué)期復(fù)習(xí)題:習(xí)題一:4,5,6,7(4),10,11,13,14,15(1),16(3)(4),18,20,21,22,23,24,25,26,27,28,29
2025-01-09 00:33
【總結(jié)】ProfLiubiyuMatrix(matrices)矩陣Acolumnvector行向量Asquarematrix方陣Arowvector列向量Adiagonalmatrix對(duì)角陣Anidentitymatrix單位陣Anuppertriangularmatrix上
2024-10-16 21:32
【總結(jié)】2021/11/101線性代數(shù)第14講二次型2021/11/102二次型就是二次多項(xiàng)式.在解析幾何中討論的有心二次曲線,當(dāng)中心與坐標(biāo)原點(diǎn)重合時(shí),其一般方程是ax2+2bxy+cy2=f(1)方程的左端就是x,y的一個(gè)二次齊次多項(xiàng)式.為了便于研究這個(gè)二次曲線的幾何性質(zhì),通過(guò)基變換(坐標(biāo)變換)
2024-10-19 01:08