【總結(jié)】一、填空題(每題4分,共24分)1.(2020·吉林高二檢測(cè))若函數(shù)f(x)=-x3+3x2+9x+a在區(qū)間[-2,-1]上的最大值為2,則它在該區(qū)間上的最小值為_(kāi)___.【解析】f′
2024-11-12 18:11
【總結(jié)】現(xiàn)金流量折現(xiàn)模型 價(jià)值 其中:n為資產(chǎn)的年限; CFt為t年的現(xiàn)金流量; r為包含了預(yù)計(jì)現(xiàn)金流量風(fēng)險(xiǎn)的折現(xiàn)率?,F(xiàn)金流量折現(xiàn)法運(yùn)用前提 現(xiàn)金流量折現(xiàn)法是建立在完全市場(chǎng)基礎(chǔ)之上的,它應(yīng)用的前提條件是,企業(yè)的經(jīng)營(yíng)是有規(guī)律的、并且是可以預(yù)測(cè)的,包括: ?。?)資本市場(chǎng)是有效率的,資產(chǎn)的價(jià)格反映資產(chǎn)的價(jià)值。企業(yè)能夠按照資本市場(chǎng)的利率,籌集足夠數(shù)量的資金資本
2025-06-07 13:29
【總結(jié)】求兩個(gè)數(shù)的最小公倍數(shù)教學(xué)內(nèi)容:教科書(shū)第25頁(yè)練習(xí)四5-8題。教學(xué)目標(biāo):1、通過(guò)練習(xí),使學(xué)生發(fā)現(xiàn)求兩個(gè)數(shù)的最小公倍數(shù)的一些簡(jiǎn)捷的方法,并能根據(jù)兩個(gè)數(shù)的關(guān)系選擇用合理的方法求兩個(gè)數(shù)的最小公倍數(shù)。2、讓學(xué)生感受數(shù)學(xué)與生活的聯(lián)系,體會(huì)解決問(wèn)題策略的多樣性。教學(xué)重難點(diǎn):掌握求兩個(gè)數(shù)最小公倍數(shù)的一些簡(jiǎn)便方法。教學(xué)過(guò)程:一、復(fù)習(xí)出示題目:
2024-11-24 17:21
【總結(jié)】中考數(shù)學(xué)幾何最值問(wèn)題解法在平面幾何的動(dòng)態(tài)問(wèn)題中,當(dāng)某幾何元素在給定條件變動(dòng)時(shí),求某幾何量(如線段的長(zhǎng)度、圖形的周長(zhǎng)或面積、角的度數(shù)以及它們的和與差)的最大值或最小值問(wèn)題,稱為最值問(wèn)題。解決平面幾何最值問(wèn)題的常用的方法有:(1)應(yīng)用兩點(diǎn)間線段最短的公理(含應(yīng)用三角形的三邊關(guān)系)求最值;(2)應(yīng)用垂線段最短的性質(zhì)求最值;(3)應(yīng)用軸對(duì)稱的性質(zhì)求最值;(4)應(yīng)用二次函數(shù)求最值;(5)應(yīng)用其它知
2025-04-04 03:00
【總結(jié)】數(shù)學(xué)競(jìng)賽輔導(dǎo)系列專題(一)利用軸對(duì)稱變換求最小值在初中數(shù)學(xué)競(jìng)賽中的應(yīng)用舉例新課改下的數(shù)學(xué)教學(xué)要求教師“要?jiǎng)?chuàng)造性地使用教材,積極開(kāi)發(fā)、利用各種教育資源為學(xué)生提供豐富多彩的學(xué)習(xí)素材;關(guān)注學(xué)生的個(gè)性差異,有效地實(shí)施差異教學(xué),使每個(gè)學(xué)生都得到發(fā)展”?!皩?duì)于學(xué)有余力并對(duì)數(shù)學(xué)有濃厚興趣的學(xué)生,教師要為他們提供足夠的材料,指導(dǎo)他們閱讀,發(fā)展他們的數(shù)學(xué)才能?!笨v觀近幾年的全國(guó)各級(jí)數(shù)學(xué)競(jìng)賽,首先是緊扣教材
2025-01-14 19:53
【總結(jié)】........解析幾何中的定點(diǎn)定值問(wèn)題考綱解讀:定點(diǎn)定值問(wèn)題是解析幾何解答題的考查重點(diǎn)。此類問(wèn)題定中有動(dòng),動(dòng)中有定,并且常與軌跡問(wèn)題,曲線系問(wèn)題等相結(jié)合,深入考查直線的圓,圓錐曲線,直線和圓錐曲線位置關(guān)系等相關(guān)知識(shí)。考查數(shù)形結(jié)合,分類討論,化歸與轉(zhuǎn)化,函數(shù)和方
2025-03-25 07:47
【總結(jié)】........解析幾何中的定值定點(diǎn)問(wèn)題(一)一、定點(diǎn)問(wèn)題【例1】.已知橢圓:的離心率為,以原點(diǎn)為圓心,橢圓的短半軸長(zhǎng)為半徑的圓與直線相切.⑴求橢圓C的方程;⑵設(shè),、是橢圓上關(guān)于軸對(duì)稱的任意兩個(gè)不同的點(diǎn),連結(jié)交橢圓于另一點(diǎn),求直線的斜率的取值范圍;
【總結(jié)】函數(shù)的最大(小)值韶關(guān)市田家炳中學(xué)范永祥一、教材分析本課是人教版教材《數(shù)學(xué)1》。本課時(shí)主要學(xué)習(xí)函數(shù)的最大(?。┲档母拍?,探索函數(shù)最大(?。┲登蠼夥椒?。本節(jié)課是在學(xué)生學(xué)習(xí)了函數(shù)概念、單調(diào)性的基礎(chǔ)上所研究的函數(shù)的一個(gè)重要性質(zhì)。函數(shù)最大(?。┲档母拍钍茄芯烤唧w函數(shù)值域的依據(jù),對(duì)于學(xué)生進(jìn)一步研究函數(shù)圖像性質(zhì),以及將來(lái)研究不等式問(wèn)題有重要作用。函數(shù)最大(?。┲档难芯糠椒ㄒ簿?/span>
2025-04-16 23:39
【總結(jié)】最大值、最小值問(wèn)題(二)雙基達(dá)標(biāo)?限時(shí)20分鐘?1.將長(zhǎng)度是8的均勻直鋼條截成兩段,使其立方和最小,則分法為().A.2與6B.4與4C.3與5D.以上均錯(cuò)解析設(shè)一段長(zhǎng)為x,則另一段為8-x,其中0x8.設(shè)y=x3+(8-x)3,則y′=3x2-
2024-12-03 00:13
【總結(jié)】觀察下列三組圖形,你能看出每組圖形中線段a與b的長(zhǎng)短嗎ababab(1)(3)(2)要比較兩根繩子的長(zhǎng)短,你有幾種方法?第一種方法用一把尺量出兩根繩子的長(zhǎng)度,再進(jìn)行比較。12354678123546780度量法1第
2024-12-08 13:30
【總結(jié)】垂線段最短與輔助圓三大模型::如圖,直線BC與直線外一點(diǎn)A,點(diǎn)A到直線BC的距離AD最短:如圖,在平面直角坐標(biāo)系中,點(diǎn)P的坐標(biāo)為(0,4),直線與軸、軸分別交于A、B,點(diǎn)M是直線AB上的一個(gè)動(dòng)點(diǎn),則PM長(zhǎng)的最小值為。2.如圖,已知?OABC的頂點(diǎn)A、C分別在直線x=1和x=4上,O是坐標(biāo)原點(diǎn),則對(duì)角
2025-03-25 03:44
【總結(jié)】三角函數(shù)求最值問(wèn)題總結(jié)在三角函數(shù)這部分,求最值或周期是常規(guī)性題目,在這種題型下,我覺(jué)得解決問(wèn)題可以采用兩種化簡(jiǎn)思路:(1)化簡(jiǎn)成BwxAy???)sin(?此時(shí)不僅可以求最值,還可以求周期。(2)化簡(jiǎn)成關(guān)于正弦或余弦的一元二次函數(shù)形式,此時(shí)一般只要求求出最值。例題解析:例1、)42sin(23????xy求
2024-10-27 14:07
【總結(jié)】中考數(shù)學(xué)幾何最值問(wèn)題解法在平面幾何的動(dòng)態(tài)問(wèn)題中,當(dāng)某幾何元素在給定條件變動(dòng)時(shí),求某幾何量(如線段的長(zhǎng)度、圖形的周長(zhǎng)或面積、角的度數(shù)以及它們的和與差)的最大值或最小值問(wèn)題,稱為最值問(wèn)題。解決平面幾何最值問(wèn)題的常用的方法有:(1)應(yīng)用兩點(diǎn)間線段最短的公理(含應(yīng)用三角形的三邊關(guān)系)求最值;(2)應(yīng)用垂線段最短的性質(zhì)求最值;(3)應(yīng)用軸對(duì)稱的性質(zhì)求最值;(4)應(yīng)用二次函數(shù)求最值;(5)應(yīng)用其它
【總結(jié)】數(shù)學(xué)組卷圓的最值問(wèn)題 一.選擇題(共7小題)1.(2014春?興化市月考)在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(3,0),點(diǎn)B為y軸正半軸上的一點(diǎn),點(diǎn)C為第一象限內(nèi)一點(diǎn),且AC=2,設(shè)tan∠BOC=m,則m的取值范圍是( )A.m≥0 B. C. D. 2.(2013?武漢模擬)如圖∠BAC=60°,半徑長(zhǎng)1的⊙O與∠BAC的兩邊相切,P為⊙O上一動(dòng)點(diǎn),以P為圓
2025-06-23 18:44
【總結(jié)】[文件][科目]數(shù)學(xué)[年級(jí)]高中[章節(jié)][關(guān)鍵詞]平均值/最值/函數(shù)[標(biāo)題]用平均值定理求某些問(wèn)題的最值[內(nèi)容]石景山區(qū)教師進(jìn)修學(xué)校賈光輝教學(xué)目標(biāo).,進(jìn)一步培養(yǎng)學(xué)生的觀察能力、分析問(wèn)題解決問(wèn)題的能力..,學(xué)生進(jìn)一步認(rèn)識(shí)現(xiàn)實(shí)世界中的量不等是普遍的,相等是局部的,對(duì)學(xué)生進(jìn)行辯證唯物主義教育.教學(xué)重點(diǎn)與難點(diǎn)重點(diǎn):用平均
2025-08-07 14:45