【總結(jié)】第四節(jié)定積分與微積分基本定理(理)重點(diǎn)難點(diǎn)重點(diǎn):了解定積分的概念,能用定義法求簡(jiǎn)單的定積分,用微積分基本定理求簡(jiǎn)單的定積分.難點(diǎn):用定義求定積分知識(shí)歸納1.定積分的定義如果函數(shù)f(x)在區(qū)間[a,b]上連續(xù),用分點(diǎn)a=x0x1&l
2024-12-07 18:51
【總結(jié)】實(shí)驗(yàn)二定積分的近似計(jì)算數(shù)學(xué)實(shí)驗(yàn)1l定積分計(jì)算的基本公式是牛頓-萊布尼茲公式。但當(dāng)被積函數(shù)的原函數(shù)不知道時(shí),如何計(jì)算?這時(shí)就需要利用近似計(jì)算。特別是在許多實(shí)際應(yīng)用中,被積函數(shù)甚至沒(méi)有解析表達(dá)式,而是一條實(shí)驗(yàn)記錄曲線,或一組離散的采樣值,此時(shí)只能用近似方法計(jì)算定積分。l本實(shí)驗(yàn)主要研究定積分的三種近似計(jì)算算法:矩形法、梯形法和拋物線法。同時(shí)介紹
2025-04-29 00:12
【總結(jié)】對(duì)定積分的補(bǔ)充規(guī)定:(1)當(dāng)ba?時(shí),0)(??badxxf;(2)當(dāng)ba?時(shí),????abbadxxfdxxf)()(.說(shuō)明在下面的性質(zhì)中,假定定積分都存在,且不考慮積分上下限的大?。?、基本內(nèi)容證??badxxgxf)]()([iiinixgf???
2025-01-14 14:49
【總結(jié)】1第四節(jié)定積分的換元積分法和分部積分法一、定積分的換元積分法定理則有2證3注意:(1)應(yīng)用定積分的換元法時(shí),與不定積分比較,多一事:換上下限;少一事:不必回代;(2)(3)逆用上述公式,即為“湊微分法”,不必?fù)Q限.4例1例2例35例4計(jì)算解原式6例5計(jì)算
2025-04-28 23:57
【總結(jié)】定積分的物理應(yīng)用復(fù)習(xí)微元法一、非均勻細(xì)桿的質(zhì)量二、變力沿直線所作的功三、液體的側(cè)壓力四、引力問(wèn)題微元法的步驟和關(guān)鍵:復(fù)習(xí)微元法(定積分概念的一個(gè)簡(jiǎn)化)非均勻分布在區(qū)間[a,b]上的所求總量A分割成分布在各子區(qū)間的局部量,........A必須對(duì)區(qū)間[a,b]具有可加
2025-04-29 00:55
【總結(jié)】定積分的換元法上一節(jié)我們建立了積分學(xué)兩類(lèi)基本問(wèn)題之間的聯(lián)系——微積分基本公式,利用這個(gè)公式計(jì)算定積分的關(guān)鍵是求出不定積分,而換元法和分部積分法是求不定積分的兩種基本方法,如果能把這兩種方法直接應(yīng)用到定積分的計(jì)算,相信定能使得定積分的計(jì)算簡(jiǎn)化,下面我們就來(lái)建立定積分的換元積分公式和分部積分公式。先來(lái)看一個(gè)例子例1換元求不定積分令則
2025-04-29 00:13
【總結(jié)】.⌒弧長(zhǎng)⌒⌒oxyxyo作業(yè)習(xí)題九(P199)1(2)(3)(6);2。
2025-04-28 23:18
【總結(jié)】返回后頁(yè)前頁(yè)§4定積分的性質(zhì)一、定積分的性質(zhì)本節(jié)將討論定積分的性質(zhì),包括定積分的線性性質(zhì)、關(guān)于積分區(qū)間的可加性、積分不等式與積分中值定理,這些性質(zhì)為定積分研究和計(jì)算提供了新的工具.二、積分中值定理返回返回后頁(yè)前頁(yè)[,]()d()d.bbaaabk
2024-08-20 14:57
【總結(jié)】第二講微積分基本公式?內(nèi)容提要1.變上限的定積分;-萊布尼茲公式。?教學(xué)要求;-萊布尼茲公式。?21)(TTdttv)()(12TsTs?一、變上限的定積分).()()(1221TsTsdttvTT????).()(tvts??其中一般地,若?
2025-05-15 01:35
【總結(jié)】§定積分的概念和性質(zhì)1、定積分基本概念2、定積分的性質(zhì)定積分概念一、定積分問(wèn)題舉例1、求曲邊梯形的面積
2024-08-14 05:19
【總結(jié)】2設(shè)函數(shù))(xu、)(xv在區(qū)間??ba,上具有連續(xù)導(dǎo)數(shù),則有??????bababavduuvudv.定積分的分部積分公式推導(dǎo)??,vuvuuv???????,)(babauvdxuv?????,??????bababadxvudxvu
2025-05-11 04:24
【總結(jié)】定積分如圖,陰影部分是由拋物線f(x)=x2,直線x=1以及x軸所圍成的平面圖形.問(wèn)題1:通常稱(chēng)這樣的平面圖形為什么?提示:曲邊梯形.問(wèn)題2:如何求出所給平面圖形的面積近似值?提示:把平面圖形分成多個(gè)小曲邊梯形,求這些小曲邊梯形的面積和.探究點(diǎn)1定積分的定義問(wèn)題3:你能求出近似值嗎
2024-11-21 04:24
【總結(jié)】定積分的定義?考慮正弦函數(shù)sin(x)在?0,??區(qū)間上。?分割.將?0,??區(qū)間等分,比如說(shuō)20份。?近似.將每個(gè)小區(qū)間上的面積用矩形的面積來(lái)近似。?積分和(黎曼和).將所有小矩形面積求和,得到整體面積的一個(gè)近似。?求極限.讓等分的份數(shù)趨近于無(wú)窮大,所得極限就是所求面積的精確值。分
2024-07-27 21:56
【總結(jié)】備考基礎(chǔ)·查清熱點(diǎn)命題·悟通遷移應(yīng)用·練透課堂練通考點(diǎn)課下提升考能首頁(yè)上一頁(yè)下一頁(yè)末頁(yè)結(jié)束數(shù)學(xué)第十二節(jié)定積分與微積分基本定理1.定積分的概念第十二節(jié)定積分與微積分基本定理在????abf(x)dx中,
2024-11-23 12:12
【總結(jié)】回顧曲邊梯形求面積的問(wèn)題??badxxfA)(第八節(jié)定積分的幾何應(yīng)用曲邊梯形由連續(xù)曲線)(xfy?)0)((?xf、x軸與兩條直線ax?、bx?所圍成。abxyo)(xfy?abxyo)(xfy?提示若用A?表示任一小區(qū)間],[xx
2025-04-21 04:48