【總結】第六章定積分應用v定積分的元素法v定積分在幾何學上的應用v定積分在物理學上的應用定積分的幾何應用平面圖形的面積體積平面曲線的弧長Oxy第三節(jié)定積分在物理學上的應用定積分物理應用之一變力沿直線作功問題從物理學知道,若物體在作直線運動過程中受常力作用從a移至b(力的方向與物體運動方向一致),力對物體所作的
2025-04-29 00:02
【總結】第五章定積分及其應用一、本章要點二、例題選講一、本章要點1、定積分定義:分割、取近似、求和、取極限.2、定積分的幾何意義:表示曲邊梯形的面積.且只有有限個第一類間斷點3、函數(shù)可積條件:4、定積分的性質:(1)線性運算性質(2)對積分區(qū)間的可加性(3)單調性(4)積分估值不等式(5)定積分
2025-04-29 00:49
【總結】在幾何中的應用1、定積分的幾何意義:Oxyaby?f(x)x=a、x=b與x軸所圍成的曲邊梯形的面積。xyOaby?f(x)當f(x)?0時,由y?f(x)、x?a、x?b與x軸所圍成的曲邊梯形位于x軸的下方,一、復習引入鞏固練習利用定積分的幾何意義
2025-04-29 01:46
【總結】abxyo2020年12月24日星期四問題情境:;;.我們把這些問題從具體的問題中抽象出來,作為一個數(shù)學概念提出來就是今天要講的定積分。由此我們可以給定積分的定義它們都歸結為:分割、近似求和、取逼近定積分的定義:一般地,設函數(shù)f(x)在
2024-11-17 22:49
【總結】§2含參量反常積分含參量反常積分的定義、1斂的定義含參量反常積分一致收、2斂的判別方法含參量反常積分一致收、3本節(jié)研究形如???adxyxf),(的含參變量廣義積分的連續(xù)性、可微性與可積性。下面只對無窮限積分討論,無界函數(shù)的情況可類似處理。)(,),(為瑕點bdxyxfba?含參量反常積分的定義、1設
2025-05-11 03:41
【總結】實驗二定積分的近似計算數(shù)學實驗1l定積分計算的基本公式是牛頓-萊布尼茲公式。但當被積函數(shù)的原函數(shù)不知道時,如何計算?這時就需要利用近似計算。特別是在許多實際應用中,被積函數(shù)甚至沒有解析表達式,而是一條實驗記錄曲線,或一組離散的采樣值,此時只能用近似方法計算定積分。l本實驗主要研究定積分的三種近似計算算法:矩形法、梯形法和拋物線法。同時介紹
2025-04-29 00:12
【總結】對定積分的補充規(guī)定:(1)當ba?時,0)(??badxxf;(2)當ba?時,????abbadxxfdxxf)()(.說明在下面的性質中,假定定積分都存在,且不考慮積分上下限的大?。?、基本內容證??badxxgxf)]()([iiinixgf???
2025-01-14 14:49
【總結】第五章定積分及其應用本章主題詞:曲邊梯形的面積、定積分、變上限的積分、牛頓-萊布尼茨公式、換元積分法、分部積分法、廣義積分。數(shù)學不僅在摧毀著物理科學中緊鎖的大門,而且正在侵入并搖撼著生物科學、心理學和社會科學。會有這樣一天,經(jīng)濟的爭執(zhí)能夠用數(shù)學以一種沒有爭吵的方式來解決,現(xiàn)在想象這一天的到來不再是謊繆的了。
2025-04-28 23:28
【總結】1第四節(jié)定積分的換元積分法和分部積分法一、定積分的換元積分法定理則有2證3注意:(1)應用定積分的換元法時,與不定積分比較,多一事:換上下限;少一事:不必回代;(2)(3)逆用上述公式,即為“湊微分法”,不必換限.4例1例2例35例4計算解原式6例5計算
2025-04-28 23:57
【總結】定積分的物理應用復習微元法一、非均勻細桿的質量二、變力沿直線所作的功三、液體的側壓力四、引力問題微元法的步驟和關鍵:復習微元法(定積分概念的一個簡化)非均勻分布在區(qū)間[a,b]上的所求總量A分割成分布在各子區(qū)間的局部量,........A必須對區(qū)間[a,b]具有可加
2025-04-29 00:55
【總結】第六章定積分應用習題課一、定積分應用的類型1.幾何應用?????平面圖形的面積特殊立體的體積平面曲線弧長???旋轉體的體積平行截面面積為已知立體的體積2.物理應用?????變力作功水壓力引力二、構造微元的基本思想及解題步驟1.構造微元的基本思想
2025-01-20 00:54
【總結】.⌒弧長⌒⌒oxyxyo作業(yè)習題九(P199)1(2)(3)(6);2。
2025-04-28 23:18
【總結】定理假設(1))(xf在],[ba上連續(xù);(2)函數(shù))(tx??在],[??上是單值的且有連續(xù)導數(shù);(3)當t在區(qū)間],[??上變化時,)(tx??的值在],[ba上變化,且a?)(??、b?)(??,則有dtttfdxxfba????????)()]([)(.
2025-01-14 14:36
【總結】定積分的分部積分公式推導一、分部積分公式例1◆定積分的分部積分法解解原式原式已積出的部分要求值定積分的分部積分法已積出的部分要求值解解原式原式解解原式原式所以所以分部積分過程:解(4)
【總結】定積分的概念abxyo??A原型(求曲邊梯形的面積)一、抽象定積分概念現(xiàn)實原型)(xfy?曲邊梯形由連續(xù)曲線軸與兩直線,所圍成.()(()0),yfxfxxxaxb????考察下列圖形由哪些曲邊圍成.A20
2025-01-14 14:52