【總結】一、函數(shù)極限的定義三、小結思考題二、函數(shù)極限的性質(zhì)第二節(jié)函數(shù)的極限一、函數(shù)極限的定義在自變量的某個變化過程中,如果對應的函數(shù)值無限接近于某個確定的常數(shù),那么這個確定的數(shù)叫做自變量在這一變化過程中函數(shù)的極限。下面,我們將主要研究以下兩種情形:;的變化情形對應的函數(shù)值任意接近于有限值自
2025-08-21 12:44
【總結】一、可分離變量的微分方程二、齊次方程四、變量代換法解方程第二節(jié)一階微分方程三、一階線性微分方程五、小結與思考題一、可分離變量的微分方程()d()dgyyfxx?可分離變量的微分方程.425d2dyxyx?例如425d2d,yyxx???解法設函數(shù))(
2025-08-21 12:46
【總結】().,,.,.,.上冊我們研究了一元函數(shù)一個自變量的函數(shù)及其微分但在許多實際問題中常常會遇到一個變量依賴于多個變量的情形這就提出了多元函數(shù)的概念以及多元函數(shù)的微分和積分問題本章將在一元函數(shù)
2025-01-19 10:12
【總結】第六章多元函數(shù)微積分教學重點:本章重點講授多元函數(shù)的基本概念、偏導、全微分、復合函數(shù)微分法與隱函數(shù)微分法、多元函數(shù)的極值及其求法、二重積分的計算。教學難點:本章難點為復合函數(shù)微分法與隱函數(shù)微分法、多元函數(shù)極值的求法、二重積分的計算。教學內(nèi)容:在前面幾章中,我們討論的函數(shù)都只有一個自變量,這種函數(shù)稱為一元函數(shù).但在許多實際問題中,我們往往要考
2025-08-21 19:47
【總結】問題???dxxex解決思路利用兩個函數(shù)乘積的求導法則.設函數(shù))(xuu?和)(xvv?具有連續(xù)導數(shù),??,vuvuuv???????,vuuvvu?????,dxvuuvdxvu??????.duvuvudv????分部積分公式第三節(jié)分部積分法容易計算.例1求積分.
2025-07-22 11:11
【總結】第五節(jié)函數(shù)關系的建立例1在一條直線公路的一側(cè)有A、B兩村,其位置如圖1-1所示,公共汽車公司欲在公路上建立汽車站M.A、B兩村各修一條直線大道通往汽車站,設CM=x(km),試把A、B兩村通往M的大道總長y(km)表示為x的函數(shù).ABCDM2kmx
2025-08-21 12:45
【總結】一、問題的提出二、積分上限函數(shù)及其導數(shù)三、牛頓-萊布尼茨公式四、小結思考題第三節(jié)微積分基本公式變速直線運動中位置函數(shù)與速度函數(shù)的聯(lián)系變速直線運動中路程為21()dTTvtt?設某物體作直線運動,已知速度)(tvv?是時間間隔],[21TT上t的一個連續(xù)函數(shù),且0)(?tv
2025-08-11 08:39
【總結】一、問題的提出二、微分方程的定義三、主要問題—求方程的解四、小結思考題第一節(jié)微分方程的基本概念例1一曲線通過點(1,2),且在該曲線上任一點),(yxM處的切線斜率為x2,求這曲線的方程.解),(xyy?設所求曲線為d2dyxx?2dyxx??積分,得2,
2025-08-21 12:40
【總結】一、函數(shù)的連續(xù)性的概念二、函數(shù)的間斷點四、小結思考題第七節(jié)函數(shù)的連續(xù)性三、初等函數(shù)的連續(xù)性一、函數(shù)的連續(xù)性(continuity)(increment).1221的增量稱為變量則變到終值從它的初值設變量uuuuuuu???注意:可正可負;u?)1(.)2(的乘積與是一個整體,
2025-08-11 16:43
【總結】一、一個方程的情形二、方程組的情形三、小結思考題第五節(jié)隱函數(shù)的求導公式0),(.1?yxF一、一個方程的情形隱函數(shù)存在定理1設函數(shù)),(yxF在點),(00yxP的某一鄰域內(nèi)具有連續(xù)的偏導數(shù),且0),(00?yxF,0),(00?yxFy,則方程0),(?yxF在點),
2025-08-11 16:41
【總結】第四節(jié)基本初等函數(shù)與初等函數(shù)一、冪函數(shù)二、指數(shù)函數(shù)與對數(shù)函數(shù)三、三角函數(shù)與反三角函數(shù)四、初等函數(shù)五、小結思考題一、冪函數(shù)(powerfunctions)冪函數(shù))(是常數(shù)???xyoxy)1,1(112xy?xy?xy1?xy?xay?xay)1(?)
2025-08-21 12:43
【總結】第八章多元函數(shù)微分法及其應用(A)1.填空題(1)若在區(qū)域上的兩個混合偏導數(shù),,則在上,。(2)函數(shù)在點處可微的條件是在點處的偏導數(shù)存在。(3)函數(shù)在點可微是在點處連續(xù)的條件。2.求下列函數(shù)的定義域(1);(2)3.求下列各極限(1);(2);(3)4.設,求及。5.
2025-06-07 17:11
【總結】設函數(shù))(xu、)(xv在區(qū)間??ba,上具有連續(xù)導數(shù),則有????bababavduuvudv.定積分的分部積分公式推導??,vuvuuv?????,)(babauvdxuv???,??????bababadxvudxvuuv.?????bababavduuvud
2025-04-21 05:00
【總結】第六節(jié)經(jīng)濟學中的常用函數(shù)一、需求函數(shù)如果價格是決定需求量的最主要因素,可以認為Q是P的函數(shù)。記作)(PfQ?則f稱為需求函數(shù).需求的含義:消費者在某一特定的時期內(nèi),在一定的價格條件下對某種商品具有購買力的需要.,bPaQ??線性需求函數(shù):常見的需求函數(shù):2cPbPaQ???二次
2025-08-11 11:12
【總結】高數(shù)課件重慶大學數(shù)理學院教師吳新生第八章多元函數(shù)微分法及其應用開始退出第一節(jié)多元函數(shù)的基本概念返回第二節(jié)偏導數(shù)第四節(jié)多元復合函數(shù)的求導法則第五節(jié)隱函數(shù)的求導公式第六節(jié)微分法在幾何
2025-08-05 05:03