【總結(jié)】主要內(nèi)容典型例題習(xí)題課第二章極限(一)極限的概念(二)連續(xù)的概念一、主要內(nèi)容左右極限兩個(gè)重要極限求極限的常用方法無(wú)窮小的性質(zhì)極限存在的充要條件判定極限存在的準(zhǔn)則無(wú)窮小的比較極限的性質(zhì)數(shù)列極限函
2025-08-21 12:39
【總結(jié)】第一講極限及其運(yùn)算法則定理:.)(lim)(lim)(lim000AxfxfAxfxxxxxx?????????例1、求下列函數(shù)極限。);(lim)()1(0xfxxfx??);(lim][)()2(1xfxxfx??).(lim010001s
2025-08-05 05:42
【總結(jié)】一、空間曲線及其方程二、空間曲線在坐標(biāo)面上的投影三、小結(jié)思考題第六節(jié)空間曲線及其方程一、空間曲線及其方程?????0),,(0),,(zyxGzyxF空間曲線的一般方程曲線上的點(diǎn)都滿足方程,滿足方程的點(diǎn)都在曲線上,不在曲線上的點(diǎn)不能同時(shí)滿足兩個(gè)方程.xoz
2025-08-21 12:38
【總結(jié)】二、數(shù)列的有關(guān)概念四、收斂數(shù)列的性質(zhì)五、小結(jié)思考題三、數(shù)列極限的定義第一節(jié)數(shù)列的極限一、引例“割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓周合體而無(wú)所失矣”1.割圓術(shù):播放——?jiǎng)⒒找弧⒁齊正六邊形的面積1A正十二邊形的面積2A????正
2025-08-21 12:40
【總結(jié)】第二節(jié)向量及其線性運(yùn)算一、向量及其幾何表示二、向量的坐標(biāo)表示三、向量的模與方向角四、向量的線性運(yùn)算五、向量的分向量表示式六、小結(jié)思考題向量(vector):既有大小又有方向的量.向量表示:以1M為起點(diǎn),2M為終點(diǎn)的有向線段.1M2M??a?21MM一、向量及其幾何表示
2025-08-21 12:44
【總結(jié)】一、全微分二、全微分在近似計(jì)算中的應(yīng)用三、小結(jié)思考題第三節(jié)全微分及其應(yīng)用),(),(yxfyxxf???xyxfx??),(),(),(yxfyyxf???yyxfy??),(二元函數(shù)對(duì)x和對(duì)y的偏微分(partialdifferential)二元函數(shù)對(duì)
2025-08-11 16:43
【總結(jié)】主要內(nèi)容典型例題第六章定積分及其應(yīng)用習(xí)題課(一)問(wèn)題1:曲邊梯形的面積問(wèn)題2:變速直線運(yùn)動(dòng)的路程存在定理廣義積分定積分定積分的性質(zhì)定積分的計(jì)算法牛頓-萊布尼茨公式()d()()bafxxFbFa??
2025-08-21 12:42
【總結(jié)】第四節(jié)中值定理(dìnglǐ)洛必達(dá)法那么一、中值定理二、洛必達(dá)法那么,第一頁(yè),共二十七頁(yè)。,一、中值定理定理2-1〔羅爾(Rolle)中值定理〕如果函數(shù)f(x)在閉區(qū)間[a,b]上連續(xù),在開(kāi)區(qū)間(a...
2025-10-22 04:22
【總結(jié)】一、函數(shù)的連續(xù)性的概念二、函數(shù)的間斷點(diǎn)四、小結(jié)思考題第七節(jié)函數(shù)的連續(xù)性三、初等函數(shù)的連續(xù)性一、函數(shù)的連續(xù)性(continuity)(increment).1221的增量稱為變量則變到終值從它的初值設(shè)變量uuuuuuu???注意:可正可負(fù);u?)1(.)2(的乘積與是一個(gè)整體,
【總結(jié)】一、最小二乘法二、小結(jié)第七節(jié)最小二乘法在工程問(wèn)題中,常常需要根據(jù)兩個(gè)變量的幾組實(shí)驗(yàn)數(shù)值——實(shí)驗(yàn)數(shù)據(jù),來(lái)找出這兩個(gè)變量的函數(shù)關(guān)系的近似表達(dá)式.通常把這樣得到的函數(shù)的近似表達(dá)式叫做經(jīng)驗(yàn)公式.一、最小二乘法(leastsquaremethod)問(wèn)題:如何得到經(jīng)驗(yàn)公式,常用的方法是什么?為了弄清某企業(yè)利潤(rùn)和產(chǎn)值
【總結(jié)】主要內(nèi)容典型例題第十一章無(wú)窮級(jí)數(shù)習(xí)題課常數(shù)項(xiàng)級(jí)數(shù)函數(shù)項(xiàng)級(jí)數(shù)正項(xiàng)級(jí)數(shù)交錯(cuò)級(jí)數(shù)冪級(jí)數(shù)收斂半徑R泰勒展開(kāi)式數(shù)或函數(shù)函數(shù)數(shù)一般項(xiàng)級(jí)數(shù)泰勒級(jí)數(shù)0)(?xRn為
【總結(jié)】隱函數(shù)的求導(dǎo)法則一、一個(gè)方程的情形二、方程組的情形一、一個(gè)方程的情形0),(.1?yxF定義:).(0),(,,0),(,xyyyxFyxyxFyx???隱函數(shù)在該區(qū)間內(nèi)確定了一個(gè)稱方程此時(shí)值與之對(duì)應(yīng)相應(yīng)地總有唯一的時(shí)取某一區(qū)間的任一值在一定條件下,當(dāng),滿足方
2025-01-20 05:31
【總結(jié)】一、利用直角坐標(biāo)系計(jì)算二重積分二、小結(jié)思考題第二節(jié)二重積分的計(jì)算法(1)如果積分區(qū)域?yàn)椋?bxa??).()(21xyx????其中函數(shù)、在區(qū)間上連續(xù).)(1x?)(2x?],[ba一、利用直角坐標(biāo)系(rightanglecoordinatesys
2025-08-21 12:45
【總結(jié)】專業(yè)資料整理分享導(dǎo)數(shù)結(jié)合洛必達(dá)法則巧解高考?jí)狠S題法則1若函數(shù)f(x)和g(x)滿足下列條件:(1)及;(2)在點(diǎn)a的去心鄰域內(nèi),f(x)與g(x)可導(dǎo)且g'(x)≠0;(3),那么=。法則2若函數(shù)f(x)和g(x)滿足下
2025-04-19 05:37
【總結(jié)】一、函數(shù)的泰勒級(jí)數(shù)二、冪級(jí)數(shù)及其收斂性三、冪級(jí)數(shù)的運(yùn)算四、小結(jié)思考題第四節(jié)泰勒級(jí)數(shù)與冪級(jí)數(shù)(1)一、函數(shù)的泰勒級(jí)數(shù)xxfcos)(?在00?x處的各階泰勒多項(xiàng)式為1)(cos0??xPx1.xxfcos)(?在00?x處的泰勒級(jí)數(shù).!2221)(cosxxPx
2025-08-11 16:41