【摘要】【成才之路】2021-2021學(xué)年高中數(shù)學(xué)最大值、最小值問題第1課時練習(xí)北師大版選修1-1一、選擇題1.函數(shù)y=x-sinx,x∈??????π2,π的最大值是()A.π-1B.π2-1C.πD.π+1[答案]C[解析]f′(x)=1-cosx≥0,
2024-12-10 19:11
【摘要】【成才之路】2021-2021學(xué)年高中數(shù)學(xué)最大值、最小值問題第2課時練習(xí)北師大版選修1-1一、選擇題1.將數(shù)8拆分為兩個非負(fù)數(shù)之和,使其立方之和為最小,則分法為()A.2和6B.4和4C.3和5D.以上都不對[答案]B[解析]設(shè)一個數(shù)為x,則另一個數(shù)為8-x,則y=x3
2024-12-10 14:03
【摘要】江蘇省建陵高級中學(xué)2020-2020學(xué)年高中數(shù)學(xué)導(dǎo)數(shù)在研究函數(shù)在的應(yīng)用(最大值與最小值)導(dǎo)學(xué)案(無答案)蘇教版選修1-1【學(xué)習(xí)目標(biāo)】1、使學(xué)生掌握可導(dǎo)函數(shù))(xf在閉區(qū)間??ba,上所有點(包括端點ba,)處的函數(shù)中的最大(或最?。┲担?、使學(xué)生掌握用導(dǎo)數(shù)求函數(shù)的最大值與最小值的方法【課前預(yù)習(xí)】
2024-12-02 00:30
【摘要】最大值與最小值一般地,設(shè)函數(shù)y=f(x)在x=x0及其附近有定義,如果f(x0)的值比x0附近所有各點的函數(shù)值都大,我們就說f(x0)是函數(shù)的一個極大值,記作y極大值=f(x0),x0是極大值點。如果f(x0)的值比x0附近所有各點的函數(shù)值都小,我們就說f(x0)是函數(shù)的一個極小值。記作y極小值=f(x0),x0是極小值點。極大
2024-11-30 08:47
【摘要】最大值與最小值一般地,設(shè)函數(shù)y=f(x)在x=x0及其附近有定義,如果f(x0)的值比x0附近所有各點的函數(shù)值都大,我們就說f(x0)是函數(shù)的一個極大值,記作y極大值=f(x0),x0是極大值點。如果f(x0)的值比x0附近所有各點的函數(shù)值都小,我們就說f(x0)是函數(shù)的一個極小值。記作y極小值=f(x0),x0是極小值點
2024-12-01 13:08
【摘要】xX2oaX3bx1y函數(shù)的最大與最小值(5月8日)教學(xué)目標(biāo):1、使學(xué)生掌握可導(dǎo)函數(shù))(xf在閉區(qū)間??ba,上所有點(包括端點ba,)處的函數(shù)中的最大(或最?。┲?;2、使學(xué)生掌握用導(dǎo)數(shù)求函數(shù)的極值及最值的方法教學(xué)重點:掌握用導(dǎo)數(shù)求函數(shù)的極值及最值的方法教學(xué)難點:提高“用導(dǎo)數(shù)求函數(shù)的極值及
2024-12-20 01:48
【摘要】計算導(dǎo)數(shù)學(xué)習(xí)目標(biāo):能夠用導(dǎo)數(shù)的定義求幾個常用初等函數(shù)的導(dǎo)數(shù)。一、自學(xué)、思考、練習(xí)憶一憶:1、函數(shù)在一點處導(dǎo)數(shù)的定義;2、導(dǎo)數(shù)的幾何意義;[3、導(dǎo)函數(shù)的定義;4、求函數(shù)的導(dǎo)數(shù)的步驟。二、參與學(xué)習(xí)試一試:1、你能推導(dǎo)下列函數(shù)的導(dǎo)數(shù)嗎?(1)()fxc?(2)()fxx?(
2024-12-17 01:49
【摘要】函數(shù)的極值【學(xué)習(xí)要求】了解函數(shù)極值的定義,會從幾何圖形直觀理解函數(shù)的極值與其導(dǎo)數(shù)的關(guān)系,增強自己的數(shù)形結(jié)合意識;掌握利用導(dǎo)數(shù)求函數(shù)的極值的一般步驟.【提問引入】請同學(xué)們觀察下圖.極值的概念:
2024-12-17 06:34
【摘要】【成才之路】2021-2021學(xué)年高中數(shù)學(xué)第3章2第2課時最大值、最小值問題課時作業(yè)北師大版選修2-2一、選擇題1.函數(shù)f(x)=x(1-x2)在[0,1]上的最大值為()A.239B.229C.329D.38[答案]A[解析]f(x)=x-x3,f′(
2024-12-17 06:27
【摘要】§函數(shù)的最大值與最小值高三數(shù)學(xué)選修(Ⅱ)第三章導(dǎo)數(shù)與微分MaximumValue&MinimumValueofFunction實際問題如圖,有一長80cm寬60cm的矩形不銹鋼薄板,用此薄板折成一個長方體無蓋容器,要分別過矩形四個頂點處各挖去一個全等的小正方形,按加工要求,長方體的高不小
2024-11-22 00:27
【摘要】復(fù)習(xí)總結(jié):導(dǎo)數(shù)應(yīng)用1.了解導(dǎo)數(shù)概念的某些實際背景(如瞬時速度,加速度,光滑曲線切線的斜率等);掌握函數(shù)在一點處的導(dǎo)數(shù)的定義和導(dǎo)數(shù)的幾何意義;理解導(dǎo)函數(shù)的概念.2.熟記八個基本導(dǎo)數(shù)公式(c,mx(m為有理數(shù)),xxaexxaxxlog,ln,,,cos,sin的導(dǎo)數(shù));掌握兩個函數(shù)和、差、積、商的求導(dǎo)法則,了解復(fù)合函數(shù)的求導(dǎo)法則
2024-12-17 06:32
【摘要】第3課時函數(shù)的最值.[a,b]上連續(xù)函數(shù)f(x)的最大值和最小值的思想方法和步驟..如圖,設(shè)鐵路線AB=50km,點C處與B之間的距離為10km,現(xiàn)將貨物從A運往C,已知1km鐵路費用為2元,1km公路費用為4元,在AB上M處修筑公路至C,使運費由A到C最省,求
2024-12-01 23:17
【摘要】計算導(dǎo)數(shù)教學(xué)過程:一、復(fù)習(xí)1、導(dǎo)數(shù)的定義;2、導(dǎo)數(shù)的幾何意義;3、導(dǎo)函數(shù)的定義;4、求函數(shù)的導(dǎo)數(shù)的流程圖。(1)求函數(shù)的改變量)()(xfxxfy?????(2)求平均變化率xxfxxfxy???????)()((3)取極限,得導(dǎo)數(shù)/y=()fx??xyx????0lim本節(jié)課我們將
2024-12-01 20:36
【摘要】實際問題中導(dǎo)數(shù)的意義一、學(xué)習(xí)要求:導(dǎo)數(shù)在實際生活中的應(yīng)用二、學(xué)習(xí)目標(biāo)能運用導(dǎo)數(shù)方法求解有關(guān)利潤最大,用料最省,效率最高等最優(yōu)化問題,體會導(dǎo)數(shù)在解決實際生活問題中的作用。三、重點難點用導(dǎo)數(shù)方法解決實際生活中的問題四、要點梳理解應(yīng)用題的基本程序是:讀題建模求解
2024-12-01 23:16
【摘要】導(dǎo)數(shù)與函數(shù)的單調(diào)性一、學(xué)習(xí)目標(biāo)1.會從幾何直觀探索并了解函數(shù)的單調(diào)性與其導(dǎo)數(shù)之間的關(guān)系,并會靈活應(yīng)用;2.會用導(dǎo)數(shù)判斷或證明函數(shù)的單調(diào)性;3.通過對函數(shù)單調(diào)性的研究,加深對函數(shù)導(dǎo)數(shù)的理解,提高用導(dǎo)數(shù)解決實際問題的能力.二、學(xué)習(xí)重、難點靈活應(yīng)用導(dǎo)數(shù)研究與函數(shù)單調(diào)性有關(guān)的問題,并能運用數(shù)形結(jié)合的思想方法.三、學(xué)習(xí)過程1.復(fù)