【摘要】課題:3.8函數(shù)的最大值與最小值(二)教學(xué)目的:1.進(jìn)一步熟練函數(shù)的最大值與最小值的求法; ⒉初步會解有關(guān)函數(shù)最大值、最小值的實際問題教學(xué)重點:解有關(guān)函數(shù)最大值、最小值的實際問題.教學(xué)難點:解有關(guān)函數(shù)最大值、最小值的實際問題.授課類型:新授課課時安排:1課時教具:多媒體、實物投影儀教學(xué)過程:一、復(fù)習(xí)引入::一般地
2025-06-27 23:34
【摘要】最大值與最小值一般地,設(shè)函數(shù)y=f(x)在x=x0及其附近有定義,如果f(x0)的值比x0附近所有各點的函數(shù)值都大,我們就說f(x0)是函數(shù)的一個極大值,記作y極大值=f(x0),x0是極大值點。如果f(x0)的值比x0附近所有各點的函數(shù)值都小,我們就說f(x0)是函數(shù)的一個極小值。記作y極小值=f(x0),x0是極小值點
2024-12-01 13:08
【摘要】函數(shù)的最大(小)值韶關(guān)市田家炳中學(xué)范永祥一、教材分析本課是人教版教材《數(shù)學(xué)1》。本課時主要學(xué)習(xí)函數(shù)的最大(?。┲档母拍?,探索函數(shù)最大(小)值求解方法。本節(jié)課是在學(xué)生學(xué)習(xí)了函數(shù)概念、單調(diào)性的基礎(chǔ)上所研究的函數(shù)的一個重要性質(zhì)。函數(shù)最大(?。┲档母拍钍茄芯烤唧w函數(shù)值域的依據(jù),對于學(xué)生進(jìn)一步研究函數(shù)圖像性質(zhì),以及將來研究不等式問題有重要作用。函數(shù)最大(?。┲档难芯糠椒ㄒ簿?/span>
2025-04-25 23:39
【摘要】熊老師初中數(shù)學(xué)教育工作室初中幾何中線段和(差)的最值問題一、兩條線段和的最小值。基本圖形解析:一)已知兩個定點:1、在一條直線m上,求一點P,使PA+PB最??;(1)點A、B在直線m兩側(cè):(2)點A、B在直線同側(cè):A、A’是關(guān)于直線m的對稱點。2、在直線m、n上分別找兩點P、Q,使PA+PQ+QB最小
2025-07-05 07:50
【摘要】算法分析與設(shè)計實驗報告第一次實驗姓名學(xué)號班級時間地點工訓(xùn)樓309實驗名稱分治算法實驗(用分治法查找數(shù)組元素的最大值和最小值)實驗?zāi)康耐ㄟ^上機(jī)實驗,要求掌握分治算法的問題描述、算法設(shè)計思想、程序設(shè)計。實驗原理使用分治的算法,根據(jù)不同的輸入用例,能準(zhǔn)確的輸出用例中的最大值與最小值。并計算出程序運行所需要的時間。程序
2025-04-25 23:42
【摘要】......初中幾何中線段和(差)的最值問題一、兩條線段和的最小值。基本圖形解析:一)、已知兩個定點:1、在一條直線m上,求一點P,使PA+PB最?。唬?)點A、B在直線m兩側(cè):
2025-04-02 12:33
【摘要】二、最大值與最小值問題則其最值只能在極值點或端點處達(dá)到.求函數(shù)最值的方法:(1)求在內(nèi)的極值可疑點(2)最大值??max?M,)(af)(bf最小值機(jī)動目錄上頁
2025-05-08 04:17
【摘要】(1)基本不等式(2)基本不等式的最大值與最小值對于任意實數(shù)x,y,(x-y)2≥0總是成立的,即x2-2xy+y2≥0所以,當(dāng)且僅當(dāng)x=y時等號成立22x+y≥xy2如果a,b都是正數(shù),那么,當(dāng)且僅當(dāng)a=b時,等號成立.a+b≥ab2,,
2024-08-09 16:08
【摘要】上頁下頁返回第1頁第二、三節(jié)函數(shù)的單調(diào)性與極值、最大值與最小值一、函數(shù)單調(diào)性的判別法二、函數(shù)的極值及其求法三、函數(shù)的最大值和最小值第三章導(dǎo)數(shù)的應(yīng)用目錄后退主頁退出本節(jié)知識引入本節(jié)目的與要求本節(jié)重點
2024-08-16 17:50
【摘要】鹿邑三高史琳畫出下列函數(shù)的草圖,并根據(jù)圖象解答下列問題:1說出y=f(x)的單調(diào)區(qū)間,以及在各單調(diào)區(qū)間上的單調(diào)性;2指出圖象的最高點或最低點,并說明它能體現(xiàn)函數(shù)的什么特征?(1)(2)32)(???xxf12)(2????xxxfxyooxy2
2024-11-24 01:38
【摘要】初中幾何中線段和(差)的最值問題一、兩條線段和的最小值?;緢D形解析:一)、已知兩個定點:1、在一條直線m上,求一點P,使PA+PB最??;(1)點A、B在直線m兩側(cè):(2)點A、B在直線同側(cè):A、A’是關(guān)于直線m的對稱點。2、在直線m、n上分別找兩點P、Q,使PA+PQ+QB最小。(1)兩個點都在直線
【摘要】【課堂新坐標(biāo)】(教師用書)2021-2021學(xué)年高中數(shù)學(xué)最大值與最小值課后知能檢測蘇教版選修1-1一、填空題1.函數(shù)f(x)=4x-x4在[-1,2]上的最大值是________.【解析】f′(x)=4-4x3,令f′(x)=0得x=1,又當(dāng)x1時,f′(x)0,x1時
2024-12-16 18:01
【摘要】最大值、最小值問題(二)雙基達(dá)標(biāo)?限時20分鐘?1.將長度是8的均勻直鋼條截成兩段,使其立方和最小,則分法為().A.2與6B.4與4C.3與5D.以上均錯解析設(shè)一段長為x,則另一段為8-x,其中0x8.設(shè)y=x3+(8-x)3,則y′=3x2-
2024-12-15 00:13
【摘要】1.3.3函數(shù)的最大值與最小值(一)一、教學(xué)目標(biāo):理解并掌握函數(shù)最大值與最小值的意義及其求法.弄請函數(shù)極值與最值的區(qū)別與聯(lián)系.養(yǎng)成“整體思維”的習(xí)慣,提高應(yīng)用知識解決實際問題的能力.二、教學(xué)重點:求函數(shù)的最值及求實際問題的最值.教學(xué)難點:求實際問題的最值.掌握求最值的方法關(guān)鍵是嚴(yán)格套用求最值的步驟,突破難點要把實際問題“數(shù)學(xué)化”
2024-12-01 19:27
【摘要】最大值與最小值一般地,設(shè)函數(shù)y=f(x)在x=x0及其附近有定義,如果f(x0)的值比x0附近所有各點的函數(shù)值都大,我們就說f(x0)是函數(shù)的一個極大值,記作y極大值=f(x0),x0是極大值點。如果f(x0)的值比x0附近所有各點的函數(shù)值都小,我們就說f(x0)是函數(shù)的一個極小值。記作y極小值=f(x0),x0是極小值點。極大
2024-11-30 08:47