【摘要】四川大學(xué)數(shù)學(xué)學(xué)院徐小湛June2022RevisedMarch2022NonhomogeneousLinearEquationswithConstantCoefficients常系數(shù)非齊次線性微分方程四川大學(xué)數(shù)學(xué)學(xué)院徐小湛June2022RevisedMarch2022二階常系數(shù)非齊次線性微分方程:
2025-05-08 06:45
【摘要】YANGZHOUUNIVERSITY常系數(shù)非齊次線性微分方程機(jī)動(dòng)目錄上頁下頁返回結(jié)束第九節(jié)型)()(xPexfmx??xxPexflx??cos)([)(?型]sin)(~xxPn??一、二、第十二章YANGZHOUUNIVER
2024-08-02 23:47
【摘要】第五節(jié)二階常系數(shù)線性齊次微分方程一、二階常系數(shù)線性齊次微分方程解的性質(zhì)與通解結(jié)構(gòu)二、二階常系數(shù)線性齊次微分方程的解法的方程,稱為二階線性微分方程.當(dāng)時(shí),方程(1)成為)1()()()(xfyxQy'xPy
2024-09-13 08:38
【摘要】的通解情況表:階常系數(shù)齊次線性方程n階常系數(shù)齊次線性方程n001)1(1)('???????ypypypynnn?特征方程00111???????pppnn?????單實(shí)根)i(xCe?一項(xiàng):??i?一對單復(fù)根ii)()sincos(21xCxCex????兩項(xiàng):?重實(shí)根kiii)(項(xiàng):k)(121???
2025-05-23 23:55
【摘要】二、二階線性方程的特征理論三、三類方程的比較一、二階線性方程的分類第四章二階線性偏微分方程的分類與總結(jié)第四章四、先驗(yàn)估計(jì)一、二階線性方程的分類111222122xxxyyyxyauauaububucuf??????1、兩個(gè)自變量的方程一
2025-03-02 15:22
【摘要】YANGZHOUUNIVERSITY二階微分方程的機(jī)動(dòng)目錄上頁下頁返回結(jié)束習(xí)題課(二)二、微分方程的應(yīng)用解法及應(yīng)用一、兩類二階微分方程的解法第十二章YANGZHOUUNIVERSITY一、兩類二階微分方程的解法1.可降階微分方程的解法—
2024-10-29 20:12
【摘要】一、二階線性微分方程解的結(jié)構(gòu)第四模塊微積分學(xué)的應(yīng)用第十三節(jié)二階常系數(shù)線性微分方程二、二階常系數(shù)線性微分方程的解法三、應(yīng)用舉例一、二階線性微分方程解的結(jié)構(gòu)二階微分方程的如下形式y(tǒng)?+p(x)y?+q(x)y=f(x)稱為二階線性微分方程,簡稱二階線性方程.
2025-01-29 02:03
【摘要】綜上所述,方程xmexPcyybya???????)(具有如下形式的特解:xmkexQxy???)(。其中)()(xPxQmm是與同次但系數(shù)待定的多項(xiàng)式,?按k不是特征方程的根、是單根或二重根依次取0,1或2。應(yīng)用歐拉公式,2cosix
2025-01-28 14:43
【摘要】常系數(shù)齊次線性微分方程1二階常系數(shù)齊次線性方程定義二階常系數(shù)齊次線性方程解法小結(jié)思考題作業(yè)n階常系數(shù)齊次線性方程解法常系數(shù)齊次線性微分方程齊次常系數(shù)常系數(shù)齊次常系數(shù)齊次常系數(shù)齊次第5章微分方程常系數(shù)齊次線性微分方程20??????qyypy方程
2025-05-08 05:34
【摘要】第八節(jié)常系數(shù)非齊次線性微分方程?一、型?二、型?三、小結(jié))()(xPexfmx????xxPxxPexfnlx???sin)(cos)()(??)(xfqyypy??????二階常系數(shù)非齊次線性方程對應(yīng)齊次方程,0??????qyypy通解結(jié)
2025-05-26 22:46
【摘要】二階常微分方程邊值問題的數(shù)值解法摘要求解微分方程數(shù)值解的方法是多種多樣的,它本身已形成一個(gè)獨(dú)立的研究方向,其要點(diǎn)是對微分方程定解問題進(jìn)行離散化.本文以研究二階常微分方程邊值問題的數(shù)值解法為目標(biāo),綜合所學(xué)相關(guān)知識(shí)和二階常微分方程的相關(guān)理論,通過對此類方程的數(shù)值解法的研究,系統(tǒng)的復(fù)習(xí)并進(jìn)一步加深對二階常微分方成的數(shù)值解法的理解,為下一步更加深入的學(xué)習(xí)和研究奠定基礎(chǔ).
2025-06-27 12:44
【摘要】有關(guān)一階線性微分方程積分因子的解法摘要:當(dāng)一階線性微分方程不是恰當(dāng)微分方程或不存在只含有一個(gè)未知數(shù)的積分因子時(shí),微分方程的積分因子不易求得.本文給出了三種特殊形式的積分因子并證明了這三種積分因子存在的充分必要條件.關(guān)鍵詞:偏導(dǎo)數(shù);偏微分方程;線性微分方程;積分因子一引言對于一階微分方程,
2025-07-03 03:52
【摘要】二、線性微分方程解的結(jié)構(gòu)三、二階常系數(shù)齊次線性方程解法五、小結(jié)思考題第五節(jié)二階常系數(shù)線性微分方程四、二階常系數(shù)非齊次線性方程解法一、定義一、定義0??????qyypy二階常系數(shù)齊次線性方程的標(biāo)準(zhǔn)形式)(xfqyypy??????二階常系數(shù)非齊次線性方程的標(biāo)準(zhǔn)形式二、線性微分方程的解的結(jié)構(gòu)
2024-09-11 12:45
【摘要】1二階常微分方程邊值問題的數(shù)值解法摘要求解微分方程數(shù)值解的方法是多種多樣的,它本身已形成一個(gè)獨(dú)立的研究方向,其要點(diǎn)是對微分方程定解問題進(jìn)行離散化.本文以研究二階常微分方程邊值問題的數(shù)值解法為目標(biāo),綜合所學(xué)相關(guān)知識(shí)和二階常微分方程的相關(guān)理論,通過對此類方程的數(shù)值解法的研究,系統(tǒng)的復(fù)習(xí)并進(jìn)一步加深對二階常微分方成的數(shù)值解法的理解,
2025-03-16 10:47
【摘要】第四節(jié)一階線性微分方程教學(xué)目的:使學(xué)生掌握一階線性微分方程的解法,了解伯努利方程的解法教學(xué)重點(diǎn):一階線性微分方程教學(xué)過程:一、一階線性微分方程方程叫做一階線性微分方程.如果Q(x)o0,則方程稱為齊次線性方程,否則方程稱為非齊次線性方程.方程叫做對應(yīng)于非齊次線性方程的齊次線性方程.
2024-09-06 06:00