【摘要】常微分方程論文學(xué)院:數(shù)學(xué)科學(xué)學(xué)院班級:12級統(tǒng)計班指導(dǎo)教師:宋旭霞小組成員:張維萍付佳奇張韋麗張萍
2025-06-15 12:01
【摘要】第三章一階微分方程解的存在定理[教學(xué)目標(biāo)]1.理解解的存在唯一性定理的條件、結(jié)論及證明思路,掌握逐次逼近法,熟練近似解的誤差估計式。2.了解解的延拓定理及延拓條件。3.理解解對初值的連續(xù)性、可微性定理的條件和結(jié)論。[教學(xué)重難點]解的存在唯一性定理的證明,解對初值的連續(xù)性、可微性定理的證明。[教學(xué)方法]講授,實踐。[教學(xué)時間]12學(xué)時[教學(xué)內(nèi)容]
2025-07-08 12:44
【摘要】第一章一階微分方程的解法的小結(jié)⑴、可分離變量的方程:①、形如當(dāng)時,得到,兩邊積分即可得到結(jié)果;當(dāng)時,則也是方程的解。、解:當(dāng)時,有,兩邊積分得到所以顯然是原方程的解;綜上所述,原方程的解為②、形如當(dāng)時,可有,兩邊積分可得結(jié)果;當(dāng)時,為原方程的解,當(dāng)時,為原方程的解。、解:當(dāng)時,有兩邊積分
2025-07-04 01:32
【摘要】YANGZHOUUNIVERSITY二階微分方程的機動目錄上頁下頁返回結(jié)束習(xí)題課(二)二、微分方程的應(yīng)用解法及應(yīng)用一、兩類二階微分方程的解法第十二章YANGZHOUUNIVERSITY一、兩類二階微分方程的解法1.可降階微分方程的解法—
2024-10-29 20:12
【摘要】1一類分?jǐn)?shù)階微分方程解的存在性(數(shù)學(xué)與統(tǒng)計學(xué)院09級數(shù)學(xué)與應(yīng)用數(shù)學(xué)1班)指導(dǎo)教師:陳攀峰引言就歷史背景而言,分?jǐn)?shù)階的微分方程與整數(shù)階的微分方程在發(fā)展時間上大致相同.分?jǐn)?shù)階微分方程追溯到16世紀(jì)末,那時整數(shù)階微積分還處于發(fā)展階段,數(shù)學(xué)家們在書信來往時,彼此探討過分?jǐn)?shù)階微分方程的相關(guān)問題.但由于當(dāng)時理論基礎(chǔ)的限制
2025-06-16 15:53
【摘要】目錄摘要…………………………………………………………………………………......1關(guān)鍵詞………………………………………...…………………………………………...1Abstract…………………………………………………………...………………………1Keywords………………………………………………………………………..………..10前言
2025-07-03 01:37
【摘要】常微分方程的初等解法1.常微分方程的基本概況:自變量﹑未知函數(shù)及函數(shù)的導(dǎo)數(shù)(或微分)組成的關(guān)系式,得到的便是微分方程,通過求解微分方程求出未知函數(shù),自變量只有一個的微分方程稱為常微分方程。:常微分方程是研究自然科學(xué)和社會科學(xué)中的事物、物體和現(xiàn)象運動﹑演化和變化規(guī)律的最為基本的數(shù)學(xué)理論和方法。物理﹑化學(xué)﹑生物﹑工程﹑航空﹑航天﹑醫(yī)學(xué)﹑經(jīng)濟(jì)和金融領(lǐng)域中的許多原理和規(guī)律都可以
2025-06-27 13:01
【摘要】第三章一階微分方程的解的存在定理需解決的問題?,)(),(1000的解是否存在初值問題???????yxyyxfdxdy?,,)(),(2000是否唯一的解是存在若初值問題???????yxyyxfdxdy§解的存在唯一性定理
2025-01-29 04:55
【摘要】目錄摘要...............................................................................................................................1..........................................
【摘要】§解對初值的連續(xù)性和可微性定理200(,),(,)(1)()dyfxyxyGRdxyxy?????????考察的解對初值的一些基本性質(zhì)00(,,)yxxy???解對初值的連續(xù)性?解對初值和參數(shù)的連續(xù)性
2025-01-29 04:56
【摘要】Matlab解常微分方程的初值問題以下類容來源于:精通matlab-張易華;清華出版社;1999年。1:問題常微分方程的初值問題的標(biāo)準(zhǔn)數(shù)學(xué)表述為:;我們要求解的任何高階常微分方程都可以用替換法化為上式所示的一階形式,其中y為向量,yo為初始值。2:Matlab中解決以上問題的步驟(1):化方程組為標(biāo)準(zhǔn)形式。例如:y’’’-3y’’-y’y
2025-01-23 21:16
【摘要】第四次:常微分方程數(shù)值解一:引言:1:微分方程在數(shù)模中有重要作用。2:列出微分方程僅是第一步,求解微方程為第二步。3:但僅有少數(shù)微分方程可解析解,大部分非線性方程,變系數(shù)方程,均所謂“解不出來”)1()()(()()]()[()(:1____])
2024-09-10 11:53
【摘要】I江西師范大學(xué)2022屆本科畢業(yè)論文常見二階偏微分方程的建立和定解問題Themontwoorderpartialdifferentialequationandthesolution院系名稱:物理與通信電子學(xué)院學(xué)生姓名:黃瑜學(xué)生學(xué)
2025-01-18 00:34
【摘要】1第三章二階及高階微分方程可降階的高階方程線性齊次常系數(shù)方程線性非齊次常系數(shù)方程的待定系數(shù)法高階微分方程的應(yīng)用線性微分方程的基本理論2前一章介紹了一些一階微分方程的解法,在實際的應(yīng)用中,還會遇到高階的微分方程,在這一章,我們討論二階及二階以上的微分方程,即高階微分方程的
2025-05-08 06:42
【摘要】 常微分方程求解的高階方法畢業(yè)論文目錄第一章前言 1 1 1 1、通解與特解 1 2. 2 3 4第二章數(shù)值解法公共程序模塊分析 5第三章歐拉(Euler)方法 7Euler方法思想 7Euler方法的誤差估計 8 8 8 9第四章休恩方法 10休恩方法思想 10 10第五章泰勒
2025-07-04 13:51