【摘要】第七節(jié)二階常系數(shù)線性非齊次微分方程一、二階常系數(shù)線性非齊次微分方程的通解結(jié)構(gòu)及特解的疊加法二、二階常系數(shù)線性非齊次微分方程的解法)1()()(,為常數(shù),qpxfqypy'y''???二階常系數(shù)線性非齊次微分方程的一般形式)2(
2024-10-10 14:58
【摘要】YANGZHOUUNIVERSITY常系數(shù)線性微分方程組機(jī)動(dòng)目錄上頁下頁返回結(jié)束*第十二節(jié)解法舉例解方程組高階方程求解消元代入法算子法第十一章YANGZHOUUNIVERSITY常系數(shù)線性微分方程組解法步驟:第一步用
2025-07-27 23:47
【摘要】常系數(shù)齊次線性微分方程1二階常系數(shù)齊次線性方程定義二階常系數(shù)齊次線性方程解法小結(jié)思考題作業(yè)n階常系數(shù)齊次線性方程解法常系數(shù)齊次線性微分方程齊次常系數(shù)常系數(shù)齊次常系數(shù)齊次常系數(shù)齊次第5章微分方程常系數(shù)齊次線性微分方程20??????qyypy方程
2025-05-08 05:34
【摘要】二、二階線性方程的特征理論三、三類方程的比較一、二階線性方程的分類第四章二階線性偏微分方程的分類與總結(jié)第四章四、先驗(yàn)估計(jì)一、二階線性方程的分類111222122xxxyyyxyauauaububucuf??????1、兩個(gè)自變量的方程一
2025-03-02 15:22
【摘要】YANGZHOUUNIVERSITY二階微分方程的機(jī)動(dòng)目錄上頁下頁返回結(jié)束習(xí)題課(二)二、微分方程的應(yīng)用解法及應(yīng)用一、兩類二階微分方程的解法第十二章YANGZHOUUNIVERSITY一、兩類二階微分方程的解法1.可降階微分方程的解法—
2024-10-29 20:12
【摘要】一、二階線性微分方程解的結(jié)構(gòu)第四模塊微積分學(xué)的應(yīng)用第十三節(jié)二階常系數(shù)線性微分方程二、二階常系數(shù)線性微分方程的解法三、應(yīng)用舉例一、二階線性微分方程解的結(jié)構(gòu)二階微分方程的如下形式y(tǒng)?+p(x)y?+q(x)y=f(x)稱為二階線性微分方程,簡(jiǎn)稱二階線性方程.
2025-01-29 02:03
【摘要】四川大學(xué)數(shù)學(xué)學(xué)院徐小湛June2022RevisedMarch2022NonhomogeneousLinearEquationswithConstantCoefficients常系數(shù)非齊次線性微分方程四川大學(xué)數(shù)學(xué)學(xué)院徐小湛June2022RevisedMarch2022二階常系數(shù)非齊次線性微分方程:
2025-05-08 06:45
【摘要】YANGZHOUUNIVERSITY常系數(shù)非齊次線性微分方程機(jī)動(dòng)目錄上頁下頁返回結(jié)束第九節(jié)型)()(xPexfmx??xxPexflx??cos)([)(?型]sin)(~xxPn??一、二、第十二章YANGZHOUUNIVER
【摘要】的通解情況表:階常系數(shù)齊次線性方程n階常系數(shù)齊次線性方程n001)1(1)('???????ypypypynnn?特征方程00111???????pppnn?????單實(shí)根)i(xCe?一項(xiàng):??i?一對(duì)單復(fù)根ii)()sincos(21xCxCex????兩項(xiàng):?重實(shí)根kiii)(項(xiàng):k)(121???
2025-05-23 23:55
【摘要】目錄待定系數(shù)法常數(shù)變異法冪級(jí)數(shù)法特征根法升階法降階法關(guān)鍵詞:微分方程,特解,通解,二階齊次線性微分方程常系數(shù)微分方程待定系數(shù)法解決常系數(shù)齊次線性微分方程特征方程(1)特征根是單根的情形設(shè)是特征方程的的個(gè)彼此不相等的根,則相應(yīng)的方程有如下個(gè)解:如果均為實(shí)數(shù),則是方程的個(gè)線性無關(guān)
2025-06-27 06:16
【摘要】§常系數(shù)線性微分方程的解法-對(duì)于一般的線性微分方程沒有普遍的解法基本點(diǎn)v常系數(shù)線性微分方程及可化為這一類型的方程的解法-只須解一個(gè)代數(shù)方程。v某些特殊的非齊次微分方程也可通過代數(shù)運(yùn)算和微分運(yùn)算求得它的通解。掌握:v特征方程與特征根,及求常系數(shù)線性方程的通解v待定系數(shù)法與拉普拉斯變換法求非齊次線性方程的特解
2025-05-08 01:03
【摘要】可降階高階微分方程機(jī)動(dòng)目錄上頁下頁返回結(jié)束一、型的微分方程二、型的微分方程三、型的微分方程可降階微分方程的解法——降階法逐次積分令,)(xpy??
2025-05-24 17:48
【摘要】第四節(jié)一階線性微分方程教學(xué)目的:使學(xué)生掌握一階線性微分方程的解法,了解伯努利方程的解法教學(xué)重點(diǎn):一階線性微分方程教學(xué)過程:一、一階線性微分方程方程叫做一階線性微分方程.如果Q(x)o0,則方程稱為齊次線性方程,否則方程稱為非齊次線性方程.方程叫做對(duì)應(yīng)于非齊次線性方程的齊次線性方程.
2024-09-06 06:00
【摘要】第八節(jié)常系數(shù)非齊次線性微分方程?一、型?二、型?三、小結(jié))()(xPexfmx????xxPxxPexfnlx???sin)(cos)()(??)(xfqyypy??????二階常系數(shù)非齊次線性方程對(duì)應(yīng)齊次方程,0??????qyypy通解結(jié)
2025-05-26 22:46
【摘要】第四節(jié)一階線性微分方程一階線性微分方程標(biāo)準(zhǔn)形式:)()(ddxQyxPxy??若Q(x)?0,0)(dd??yxPxy若Q(x)?0,稱為非齊次方程.1.解齊次方程分離變量?jī)蛇叿e分得CxxPylnd)(ln????故通解為xxPCyd)(e???稱為齊次方程
2025-07-31 11:17