【摘要】廈門一中立體幾何專題一、選擇題(10×5′=50′)第1題圖,設(shè)O是正三棱錐P-ABC底面三角形ABC的中心,過O的動平面與P-ABC的三條側(cè)棱或其延長線的交點分別記為Q、R、S,則(),且最大值與最小值不等,相鄰兩側(cè)面所成的二面角的取值范圍是
2025-04-10 05:03
【摘要】空間向量的引入為代數(shù)方法處理立體幾何問題提供了一種重要的工具和方法,解題時,可用定量的計算代替定性的分析,從而回避了一些嚴謹?shù)耐评碚撟C。求空間角與距離是立體幾何的一類重要的問題,也是高考的熱點之一。本節(jié)課主要是討論怎么樣用向量的辦法解決空間角的問題。數(shù)量積:夾角公式:異面直線所成角的范圍:思考:結(jié)論:題型
2024-11-19 02:54
【摘要】立體幾何專題復(fù)習(xí)練習(xí):三視圖“前面、后面、上面、下面、左面、右面”表示,如圖是這個正方體的表面積展開圖,若圖中“努”在正方體的后面,那么這個正方體的前面是() A.定 B.有 C.收 D.獲,點、、、、均在半徑為1的同一球面上,則底面的中心與頂點之間的距離為()(A)(B)(C)(D)
2025-04-01 05:40
【摘要】高三數(shù)學(xué)立體幾何復(fù)習(xí)一、填空題1.分別在兩個平行平面內(nèi)的兩條直線間的位置關(guān)系不可能為①平行②相交③異面④垂直【答案】②【解析】兩平行平面沒有公共點,所以兩直線沒有公共點,所以兩直線不可能相交2.已知圓錐的母線長
2025-06-30 15:29
【摘要】高三數(shù)學(xué)下學(xué)期模擬試題之立體幾何-----------------------作者:-----------------------日期:n更多企業(yè)學(xué)院:《中小企業(yè)管理全能版》183套講座+89700份資料《總經(jīng)理、高層管理》49套講座+16388份資料《中層管理學(xué)院》46套講座+
2025-04-10 05:02
【摘要】第1頁共8頁立體幾何(文)一、知識要點:1、能識別三視圖所表示的空間幾何體;了解球、棱柱、棱錐、臺的表面積和體積的計算公式(不要求記憶公式)。2、理解空間直線、平面位置關(guān)系的定義,并了解如下可以作為推理依據(jù)的公理和定理:◆公理1:如果一條直線上的兩點在一個平面內(nèi),這條直線上所有的點在此平面內(nèi).◆公理2:過不在
2024-11-10 19:39
【摘要】高三文科數(shù)學(xué)立體幾何翻折問題,AB=3,DC=1,∠BAD=45°,DE⊥AB(如圖1).現(xiàn)將△ADE沿DE折起,使得AE⊥EB(如圖2),連結(jié)AC,AB,設(shè)M是AB的中點.(1)求證:BC⊥平面AEC;(2)判斷直線EM是否平行于平面ACD,并說明理由.
【摘要】俯視圖正(主)視圖側(cè)(左)視圖2322萬全高中高三數(shù)學(xué)(文)同步練習(xí)(23)---立體幾何一、選擇題1、右圖是一個幾何體的三視圖,根據(jù)圖中數(shù)據(jù),()可得該幾何體的表面積是()A. B. C. D.2、已知α,β是平面,m,() A.若m∥n,m⊥α,則n⊥
2025-06-13 19:13
【摘要】立體幾何(文)一、知識要點:1、能識別三視圖所表示的空間幾何體;了解球、棱柱、棱錐、臺的表面積和體積的計算公式(不要求記憶公式)。2、理解空間直線、平面位置關(guān)系的定義,并了解如下可以作為推理依據(jù)的公理和定理:◆公理1:如果一條直線上的兩點在一個平面內(nèi),這條直線上所有的點在此平面內(nèi).◆公理2:過不在同一條直線上的三點,有且只有一個平面(三個推論).◆公理3:如果兩個
2024-08-22 16:48
【摘要】高三數(shù)學(xué)復(fù)習(xí)——立體幾何中的平行與垂直的證明一、平面的基本性質(zhì)公理1:公理2:推論1:推論2:推論3:公理3:二、空間中直線與直線的位置關(guān)系平行:相交:異面:三、平行問題1.直線與平面平行的判定與性質(zhì)定義判定定理性質(zhì)性質(zhì)定理圖形條件a∥α結(jié)
2025-04-23 13:02
【摘要】秭歸縣屈原高中張鴻斌專題立幾問題的向量解法高考復(fù)習(xí)建議傳統(tǒng)的立幾問題是用立幾的公理和定理通過從“形”到“式”的邏輯推理,解決線與線、線與面、面與面的位置關(guān)系以及幾何體的有關(guān)問題,常需作輔助線,但有時卻不易作出,而空間向量解立幾問題則體現(xiàn)了“數(shù)”與“形”的結(jié)合,通過向量的代數(shù)計算解決問題,無須添加輔助線。用空間向量解立幾問題
2024-11-17 12:27
【摘要】高三數(shù)學(xué)專項訓(xùn)練:立體幾何解答題(文科)(一)1.(本題滿分12分)如圖,三棱錐A—BPC中,AP⊥PC,AC⊥BC,M為AB中點,D為PB中點,且△PMB為正三角形.(Ⅰ)求證:DM//平面APC;(Ⅱ)求證:平面ABC⊥平面APC;(Ⅲ)若BC=4,AB=20,求三棱錐D—BCM的體積.2.如圖1,在四棱錐中,底面
【摘要】主講教師:立體幾何復(fù)習(xí)例1.正方體A1B1C1D1-ABCD的棱長為a,在AD1和BD上分別截取AP=BQ=a.求證:(1)PQ∥平面CD1;(2)PQ⊥BC.ACDD1A1B1C1BPQ例,四棱錐P-ABCD的底面ABCD是矩形,PA⊥平
2024-11-17 09:19
【摘要】專題四立體幾何/1/.ABCDABEFABMACNFBAMFNMNBCE???兩個全等的正方形和所在平面相交于,,,且,求證:平面例()//()()//?解決本題的關(guān)鍵在于找出平面內(nèi)的一條直線
2024-07-31 00:17
【摘要】立體幾何專題之三垂線定理北京大學(xué)光華管理學(xué)院何洋寫在前面的話?高三同學(xué)在對立體幾何的基本知識進行了系統(tǒng)的復(fù)習(xí)之后,對于比較重要的定理、概念以及在學(xué)習(xí)過程中感到難于掌握的問題進行綜合性的專題復(fù)習(xí)是很必要的。在專題復(fù)習(xí)中應(yīng)通過分類、總結(jié),提高對所學(xué)內(nèi)容的認識和理解。今天我和大家共同探討高中立體幾何中的三垂線問題。寫在前面的
2025-05-13 12:06