【總結(jié)】一輪復(fù)習(xí)之立體幾何姓名一輪復(fù)習(xí)之立體幾何姓名1.已知三棱錐中,為等腰直角三角形,,設(shè)點(diǎn)為中點(diǎn),點(diǎn)為中點(diǎn),點(diǎn)為上一點(diǎn),且.(1)證明:平面;(2)若,求直線與平面所成角的正弦值.
2025-07-24 12:16
【總結(jié)】立體幾何中的翻折問題連州中學(xué)周騰達(dá)圖形的展開與翻折問題就是一個(gè)由抽象到直觀,由直觀到抽象的過程.在歷年高考中以圖形的展開與折疊作為命題對(duì)象時(shí)常出現(xiàn),因此,關(guān)注圖形的展開與折疊問題是非常必要的.折疊問題2020年高考的熱點(diǎn),預(yù)測(cè)明年高考也應(yīng)是一個(gè)熱點(diǎn).把一個(gè)平面圖形按某種要求折
2024-11-09 05:40
【總結(jié)】空間向量之應(yīng)用3利用空間向量求距離課本P42如果表示向量a的有向線段所在直線垂直于平面?,則稱這個(gè)向量垂直于平面?,記作a⊥?.如果a⊥?,那么向量a叫做平面?的法向量.?la課本P33已知向量ABa?和軸l,e是l上與l同方向的單位向量.作
2025-01-08 13:41
【總結(jié)】高考鏈接三視圖專題訓(xùn)練[2011·安徽卷]一個(gè)空間幾何體的三視圖如圖1-1所示,則該幾何體的表面積為( )圖1-1A.48B.32+8C.48+8D.80[2011·安徽卷]C 【解析】由三視圖可知本題所給的是一個(gè)底面為等腰梯形的放倒的直四棱柱(如圖所示),所以該直四棱柱的表面積為S=2××(
2025-03-25 06:43
【總結(jié)】第一篇:立體幾何的證明方法 立體幾何的證明方法 1.線面平行的證明方法 2.兩線平行的證明方法 7、空間平行、垂直之間的轉(zhuǎn)化與聯(lián)系: 應(yīng)用判定定理時(shí),注意由“低維”到“高維”:“線線...
2024-11-15 05:58
【總結(jié)】空間向量的引入為代數(shù)方法處理立體幾何問題提供了一種重要的工具和方法,解題時(shí),可用定量的計(jì)算代替定性的分析,從而回避了一些嚴(yán)謹(jǐn)?shù)耐评碚撟C。求空間角與距離是立體幾何的一類重要的問題,也是高考的熱點(diǎn)之一。本節(jié)課主要是討論怎么樣用向量的辦法解決空間角與距離的問題。建立空間直角坐標(biāo)系,解立體幾何題1122330???abab
2024-11-09 01:53
【總結(jié)】第35講空間幾何體的結(jié)構(gòu)第36講空間幾何體的三視圖和直觀圖第37講平面的基本性質(zhì)第38講空間中的平行關(guān)系│知識(shí)框架知識(shí)框架│知識(shí)框架│知識(shí)框架1.空間幾何體(1)認(rèn)識(shí)柱、錐、臺(tái)、球及其簡單組合體的結(jié)構(gòu)特征,并能運(yùn)用
2025-07-22 16:34
【總結(jié)】第一篇:立體幾何的證明策略 立體幾何的證明策略: 幾何法證明 證明平行:3,2,11、線線平行:公理四,10頁 線面平行的性質(zhì)定理,課本20頁面面平行的性質(zhì)定理,36頁 2、線面平行:線面平...
2024-11-12 18:00
【總結(jié)】第六講立體幾何新題型【考點(diǎn)透視】(A),對(duì)于異面直線的距離,、直線和平面所成的角、、二面角的平面角、兩個(gè)平行平面間的距離的概念.(B)版.①理解空間向量的概念,掌握空間向量的加法、減法和數(shù)乘.②了解空間向量的基本定理,理解空間向量坐標(biāo)的概念,掌握空間向量的坐標(biāo)運(yùn)算.③掌握空間向量的數(shù)量積的定義及其性質(zhì),掌握用直角坐標(biāo)計(jì)算空間向量數(shù)量積公式.④理解直線的方向向量
2025-08-05 18:17
【總結(jié)】華夏學(xué)校資料庫1、已知四邊形是空間四邊形,分別是邊的中點(diǎn)(1)求證:EFGH是平行四邊形AHGFEDCB(2)若BD=,AC=2,EG=2。求異面直線AC、BD所成的角和EG、BD所成的角。2、如圖,已知空間四邊形中,,是的中點(diǎn)。求證:(1)平面CDE;AEDBC(2)平面平面。
2025-04-04 05:14
【總結(jié)】高中課程復(fù)習(xí)專題——數(shù)學(xué)立體幾何一空間幾何體㈠空間幾何體的類型1多面體:由若干個(gè)平面多邊形圍成的幾何體。圍成多面體的各個(gè)多邊形叫做多面體的面,相鄰兩個(gè)面的公共邊叫做多面體的棱,棱與棱的公共點(diǎn)叫做多面體的頂點(diǎn)。2旋轉(zhuǎn)體:把一個(gè)平面圖形繞它所在的平面內(nèi)的一條定直線旋轉(zhuǎn)形成了封閉幾何體。其中,這條直線稱為
【總結(jié)】1上杭縣高級(jí)中學(xué)講課人:周文才時(shí)間:07年12月14日2345678所以:解:以點(diǎn)C為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系如圖所示,設(shè)則C||所以與所成角的余弦值為9設(shè)平面xyz點(diǎn)評(píng):找到
2024-11-12 16:42
【總結(jié)】空間向量在立幾中應(yīng)用空間向量在立體幾何中的應(yīng)用空間向量在立幾中應(yīng)用利用向量判斷位置關(guān)系利用向量可證明四點(diǎn)共面、線線平行、線面平行、線線垂直、線面垂直等問題,其方法是通過向量的運(yùn)算來判斷,這是數(shù)形結(jié)合的典型問題空間向量在立幾中應(yīng)用例1、在正方體AC1中,E、F分別是BB1、CD的中點(diǎn),求
2025-07-20 05:00
【總結(jié)】理科數(shù)學(xué)高考立體幾何大題精選不建系求解1.本小題滿分12分)(注意:在試題卷上作答無效)如圖,四棱錐S-ABCD中,SD底面ABCD,AB//DC,ADDC,AB=AD=1,DC=SD=2,E為棱SB上的一點(diǎn),平面EDC平面SBC.(Ⅰ)證明:SE=2EB;(Ⅱ)求二面角A-DE-C的大小.2.(本小
2025-04-17 06:43
【總結(jié)】《三視圖》,如左圖所示,則該三棱錐的外接球的表面積為AB主視圖C左視圖俯視圖342俯視圖主視圖左視圖,其中,主視圖中△ABC是邊長為2的正三角形,俯視圖為正六邊形,那么該幾何體的體積為22主視圖24左視圖俯視圖(第3圖),根據(jù)圖中標(biāo)出的尺寸