【總結(jié)】.WORD格式整理..高中數(shù)學(xué)《立體幾何》大題及答案解析(理)1.(2009全國(guó)卷Ⅰ)如圖,四棱錐中,底面為矩形,底面,,,點(diǎn)在側(cè)棱上,。(I)證明:是側(cè)棱的中點(diǎn);求二面角的大小。2.(2009全國(guó)卷Ⅱ)如圖,直三棱柱ABC-A1B1
2025-06-24 05:29
【總結(jié)】立體幾何復(fù)習(xí)學(xué)案 班級(jí)學(xué)號(hào)姓名 【課前預(yù)習(xí)】 1.已知是兩條不同的直線,是兩個(gè)不同的平面,有下列四個(gè)命題: ①若,且,則;②若,且,則; ③若,且,則;④若,且,則. 則所有正確命題的序號(hào)...
2025-09-30 19:06
【總結(jié)】立體幾何復(fù)習(xí)學(xué)案班級(jí)學(xué)號(hào)姓名【課前預(yù)習(xí)】1.已知,lm是兩條不同的直線,,??是兩個(gè)不同的平面,有下列四個(gè)命題:①若l??,且???,則l??;②若l??,且//??,則l??;③若l??
2025-11-11 01:07
【總結(jié)】高中數(shù)學(xué)必修2立體幾何測(cè)試題及答案(一)一,選擇(共80分,每小題4分)1,三個(gè)平面可將空間分成n個(gè)部分,n的取值為()A,4;B,4,6;C,4,6,7;D,4,6,7,8。2,兩條不相交的空間直線a、b,必存在平面α,使得()A,aα、bα;B,aα、b∥α;C,a⊥α、b⊥α;D,aα、b⊥α。3,若p是兩條異面直線a、b外的任意一點(diǎn),則()A,過點(diǎn)
2025-06-18 14:12
【總結(jié)】立體幾何專題:空間角和距離的計(jì)算一線線角1.直三棱柱A1B1C1-ABC,∠BCA=900,點(diǎn)D1,F(xiàn)1分別是A1B1和A1C1的中點(diǎn),若BC=CA=CC1,求BD1與AF1所成角的余弦值。2.在四棱錐P-ABCD中,底面ABCD是直角梯形,∠BAD=900,AD∥BC,AB=BC=a,AD=2a,且PA⊥面ABCD,PD與底面成300角,(1)若AE⊥PD,E為垂足,求證:B
2025-04-04 04:20
【總結(jié)】立體幾何選擇題:一、三視圖考點(diǎn)透視:①能想象空間幾何體的三視圖,并判斷(選擇題).②通過三視圖計(jì)算空間幾何體的體積或表面積.③解答題中也可能以三視圖為載體考查證明題和計(jì)算題.,該幾何體的體積為,則正視圖中x的值為()A.5B.4C
2025-04-04 05:14
【總結(jié)】解析幾何題型求參數(shù)的值是高考題中的常見題型之一,其解法為從曲線的性質(zhì)入手,構(gòu)造方程解之.例1.若拋物線的焦點(diǎn)與橢圓的右焦點(diǎn)重合,則的值為()A.B.C.D.考查意圖:本題主要考查拋物線、橢圓的標(biāo)準(zhǔn)方程和拋物線、橢圓的基本幾何性質(zhì).解答過程:橢圓的右焦點(diǎn)為(2,0),所以拋物線的焦點(diǎn)為(2,0),則
2025-08-05 16:59
【總結(jié)】高中數(shù)學(xué)(人教版)必修二《立體幾何》綜合提升卷 一.選擇題(共13小題,滿分65分,每小題5分)1.(5分)設(shè)三棱柱ABC﹣A1B1C1的側(cè)棱與底面垂直,∠BCA=90°,BC=CA=2,若該棱柱的所有頂點(diǎn)都在體積為的球面上,則直線B1C與直線AC1所成角的余弦值為( ?。〢. B. C. D.2.(5分)設(shè)l、m、n表示不同的直線,α、β、γ表示不同的平面,給
2025-04-04 05:06
【總結(jié)】江蘇省射陽(yáng)縣盤灣中學(xué)高中數(shù)學(xué)立體幾何復(fù)習(xí)(第1課時(shí))教案蘇教版必修2復(fù)習(xí)目標(biāo):理解并掌握平面的基本性質(zhì);理解三個(gè)公理,掌握“文字語(yǔ)言”、“符號(hào)語(yǔ)言”、“圖形語(yǔ)言”三種語(yǔ)言之間的轉(zhuǎn)化;能利用公理及推論找出兩個(gè)平面的交線及有關(guān)“三線共點(diǎn)”、“三點(diǎn)共線”、“點(diǎn)線共面”問題的簡(jiǎn)單證明。一、基礎(chǔ)訓(xùn)練:1、若三個(gè)平面把空間分成6個(gè)部分,那么這三個(gè)平
2025-11-10 23:14
【總結(jié)】空間向量練習(xí)題1.如圖所示,四棱錐P-ABCD的底面ABCD是邊長(zhǎng)為1的菱形,∠BCD=60°,E是CD的中點(diǎn),PA⊥底面ABCD,PA=2.(Ⅰ)證明:平面PBE⊥平面PAB;(Ⅱ)求平面PAD和平面PBE所成二面角(銳角)的大小.如圖所示,以A為原點(diǎn),坐標(biāo)分別是A(0,0,0),B(1,0,0),P(0,0,2),(Ⅰ)證明因?yàn)椋?/span>
2025-06-27 22:52
【總結(jié)】高中數(shù)學(xué)《必修2》知識(shí)點(diǎn)版權(quán)所有王子安第一章空間幾何體一、常見幾何體的定義能說出棱柱、棱錐、棱臺(tái)、圓柱、圓錐、圓臺(tái)、球的定義和性質(zhì)。二、常見幾何體的面積、體積公式1.圓柱:側(cè)面積(其中是底面周長(zhǎng),是底面半徑,是圓柱的母線,也是
2025-04-04 05:10
【總結(jié)】江蘇省射陽(yáng)縣盤灣中學(xué)高中數(shù)學(xué)立體幾何復(fù)習(xí)(第3課時(shí))教案蘇教版必修2復(fù)習(xí)目標(biāo):理解并掌握直線與平面垂直的判定定理及性質(zhì)定理、平面與平面垂直的判定定理及性質(zhì)定理。能抓住線線垂直、線面垂直、面面垂直之間的轉(zhuǎn)化關(guān)系解決有關(guān)垂直問題;會(huì)求簡(jiǎn)單的二面角的平面角問題。注重滲透化歸與轉(zhuǎn)化的數(shù)學(xué)思想一、基礎(chǔ)訓(xùn)練:1、若直線a與平面?不垂直,那么在平面
【總結(jié)】立體幾何專題復(fù)習(xí)一、【知識(shí)總結(jié)】基本圖形1.棱柱——有兩個(gè)面互相平行,其余各面都是四邊形,并且每相鄰兩個(gè)四邊形的公共邊都互相平行,由這些面所圍成的幾何體叫做棱柱。①②四棱柱底面為平行四邊形平行六面體側(cè)棱垂直于底面直平行六面體底面為矩形長(zhǎng)方體底面為正方形正四棱柱側(cè)棱與底面邊長(zhǎng)相等正方體
2025-03-25 06:44
【總結(jié)】(一)教學(xué)要求:了解共線或平行向量的概念,掌握表示方法;理解共線向量定理及其推論;掌握空間直線的向量參數(shù)方程;會(huì)運(yùn)用上述知識(shí)解決立體幾何中有關(guān)的簡(jiǎn)單問題.教學(xué)重點(diǎn):空間直線、平面的向量參數(shù)方程及線段中點(diǎn)的向量公式.教學(xué)過程:一、復(fù)習(xí)引入1.回顧平面向量向量知識(shí):平行向量或共線向量?怎樣判定向量與非零向量是否共線?方向相同或者相反的非零向量叫做平行向量.由于任何一組平行向
2025-06-07 23:19
【總結(jié)】第1章立體幾何初步(A)(時(shí)間:120分鐘滿分:160分)一、填空題(本大題共14小題,每小題5分,共70分)1.將一個(gè)等腰梯形繞它的較長(zhǎng)的底邊所在的直線旋轉(zhuǎn)一周,所得的幾何體包括________________.2.一個(gè)三角形在其直觀圖中對(duì)應(yīng)一個(gè)邊長(zhǎng)為1的正三角形,原三角形的面積為________.
2025-11-26 00:28