【總結(jié)】,第三章空間向量與立體幾何,3.2立體幾何中的向量方法第2課時(shí)空間向量與垂直關(guān)系,第一頁,編輯于星期六:點(diǎn)三十八分。,第二頁,編輯于星期六:點(diǎn)三十八分。,自,主,預(yù),習(xí),探,新,知,第三頁,編輯于星期...
2025-10-13 19:06
【總結(jié)】1.立體幾何初步(1)空間幾何體①認(rèn)識(shí)柱、錐、臺(tái)、球及其簡單組合體的結(jié)構(gòu)特征,并能運(yùn)用這些特征描述現(xiàn)實(shí)生活中簡單物體的結(jié)構(gòu).②能畫出簡單空間圖形(長方體、球、圓柱、圓錐、棱柱等的簡易組合)的三視圖,能識(shí)別上述的三視圖所表示的立體模型,會(huì)用斜二測法畫出它們的直觀圖.③會(huì)用平行投影與中心
2025-06-16 12:13
【總結(jié)】第三章空間向量與立體幾何人教A版數(shù)學(xué)第三章空間向量與立體幾何人教A版數(shù)學(xué)第三章空間向量與立體幾何人教A版數(shù)學(xué)1.知識(shí)與技能掌握空間向量的數(shù)乘運(yùn)算.理解共線向量,直線的方向向量和共面向量.2.過程與方法
2025-10-07 20:16
【總結(jié)】章末歸納總結(jié)一、選擇題1.已知向量a=????8,12x,x,b=(x,1,2),其中xa∥b,則x的值為()A.8B.4C.2D.0[答案]B[解析]解法一:x=8,2,0時(shí)都不滿足a∥b.而x=4時(shí),a=(8,2,4)=
2024-11-15 21:17
【總結(jié)】大成培訓(xùn)立體幾何強(qiáng)化訓(xùn)練,在四面體ABCD中,CB=CD,AD⊥BD,點(diǎn)E,F分別是AB,BD的中點(diǎn).求證:(Ⅰ)直線EF∥平面ACD;(Ⅱ)平面EFC⊥平面BCD.,在直三棱柱ABC-A1B1C1中,E、F分別是A1B、A1C的中點(diǎn),點(diǎn)D在B1C1上,A
2025-04-04 05:14
【總結(jié)】高中數(shù)學(xué)立體幾何大題訓(xùn)練,在長方體中,AB=AD=1,AA1=2,M是棱CC1的中點(diǎn)(Ⅰ)求異面直線A1M和C1D1所成的角的正切值;(Ⅱ)證明:平面ABM⊥平面A1B1M1,在矩形中,點(diǎn)分別在線段上,.沿直線將翻折成,使平面.(Ⅰ)求二面角的余弦值;(Ⅱ)點(diǎn)分別在線段上,若沿直線將四邊形向上翻折,使與重合,求線段的長。,直三棱柱中
【總結(jié)】立體幾何中的向量方法(2)【學(xué)習(xí)目標(biāo)】1.掌握利用向量運(yùn)算解幾何題的方法,并能解簡單的立體幾何問題;2.掌握向量運(yùn)算在幾何中求兩點(diǎn)間距離和求空間圖形中的角度的計(jì)算方法.【重點(diǎn)難點(diǎn)】利用向量運(yùn)算解幾何題【學(xué)習(xí)過程】一、自主預(yù)習(xí)(預(yù)習(xí)教材P105~P107,找出疑惑之處.復(fù)習(xí)1:已知1ab??,1
2024-11-19 17:32
【總結(jié)】立體幾何中的向量方法(1)【學(xué)習(xí)目標(biāo)】1.掌握直線的方向向量及平面的法向量的概念;2.掌握利用直線的方向向量及平面的法向量解決平行、垂直、夾角等立體幾何問題.【重點(diǎn)難點(diǎn)】直線的方向向量及平面的法向量【學(xué)習(xí)過程】一、自主預(yù)習(xí)(預(yù)習(xí)教材P102~P104,找出疑惑之處)復(fù)習(xí)1:
2024-11-19 20:38
【總結(jié)】平行判定總結(jié)一、線線平行的判定:在同一平面內(nèi),沒有公共點(diǎn)的兩條直線..,經(jīng)過這條直線的平面和這個(gè)平面相交,那么這條直線和交線平行.,那么它們的交線平行..二、線面平行的判定:直線與平面無公共
【總結(jié)】一、復(fù)習(xí)目標(biāo):1、理解直線的方向向量與平面的法向量并會(huì)求直線的方向向量與平面的法向量。2、理解和掌握向量共線與共面的判斷方法。3、用向量法會(huì)熟練判斷和證明線面平行與垂直。立體幾何中的向量方法(一)第十三章《空間向量與立體幾何》二、重難點(diǎn):概念與方法的運(yùn)用三、教學(xué)方法:探析歸納,講練結(jié)合。四、教學(xué)過程(一)、
2024-11-12 18:10
【總結(jié)】第一篇:高中數(shù)學(xué)立體幾何證明公式 線線平行→線面平行如果平面外一條直線和這個(gè)平面內(nèi)的一條直線平行,那么這條直線和這個(gè)平面平行。 線面平行→線線平行如果一條直線和一個(gè)平面平行,經(jīng)過這條直線的平面和這...
2025-10-18 00:25
【總結(jié)】ABDClβαDCBADCBAE立體幾何中的向量方法——二面角【學(xué)習(xí)目標(biāo)】能用向量方法解決二面角的計(jì)算問題.【自主學(xué)習(xí)】1.二面角的大小是用它的平面角來度量的,求二面角關(guān)鍵是確定二面角的平面角.探究,二面角α-l-β,AB?α,CD?β,AB⊥
2024-11-19 23:24
【總結(jié)】立體幾何專題之三垂線定理北京大學(xué)光華管理學(xué)院何洋寫在前面的話?高三同學(xué)在對(duì)立體幾何的基本知識(shí)進(jìn)行了系統(tǒng)的復(fù)習(xí)之后,對(duì)于比較重要的定理、概念以及在學(xué)習(xí)過程中感到難于掌握的問題進(jìn)行綜合性的專題復(fù)習(xí)是很必要的。在專題復(fù)習(xí)中應(yīng)通過分類、總結(jié),提高對(duì)所學(xué)內(nèi)容的認(rèn)識(shí)和理解。今天我和大家共同探討高中立體幾何中的三垂線問題。寫在前面的
2025-05-07 12:06
2024-11-09 08:06
【總結(jié)】向量代數(shù)空間解析幾何定義:既有大小又有方向的量稱為向量.相等向量、負(fù)向量、向徑.零向量、向量的模單位向量、向量代數(shù)(2)向量的分解式:},,{zyxaaaa??.,,,,軸上的投影分別為向量在其中zyxaaazyxkajaiaazyx??????
2025-09-25 17:17