【總結(jié)】一、復習用空間向量解決立體幾何問題的“三步曲”。(1)建立立體圖形與空間向量的聯(lián)系,用空間向量表示問題中涉及的點、直線、平面,把立體幾何問題轉(zhuǎn)化為向量問題;(2)通過向量運算,研究點、直線、平面之間的位置關系以及它們之間距離和夾角等問題;(3)把向量的運算結(jié)果“翻譯”成相應的幾何意義。(化為向量問題)(進行向量運算)(
2024-11-09 03:30
【總結(jié)】第三章空間向量與立體幾何人教A版數(shù)學第三章空間向量與立體幾何人教A版數(shù)學第三章空間向量與立體幾何人教A版數(shù)學1.知識與技能掌握空間向量的數(shù)乘運算.理解共線向量,直線的方向向量和共面向量.2.過程與方法
2024-10-16 20:16
【總結(jié)】第一篇:立體幾何證明 1、(14分)如圖,在正方體ABCD-A1B1C1D1中,E、F為棱AD、AB的中點.(1)求證:EF∥平面CB1D1; (2)求證:平面CAA1C1⊥平面CB1D1. A...
2024-11-12 12:11
【總結(jié)】一輪復習之立體幾何姓名一輪復習之立體幾何姓名1.已知三棱錐中,為等腰直角三角形,,設點為中點,點為中點,點為上一點,且.(1)證明:平面;(2)若,求直線與平面所成角的正弦值.
2025-07-24 12:16
【總結(jié)】立體幾何中的翻折問題連州中學周騰達圖形的展開與翻折問題就是一個由抽象到直觀,由直觀到抽象的過程.在歷年高考中以圖形的展開與折疊作為命題對象時常出現(xiàn),因此,關注圖形的展開與折疊問題是非常必要的.折疊問題2020年高考的熱點,預測明年高考也應是一個熱點.把一個平面圖形按某種要求折
2024-11-09 05:40
【總結(jié)】空間向量之應用3利用空間向量求距離課本P42如果表示向量a的有向線段所在直線垂直于平面?,則稱這個向量垂直于平面?,記作a⊥?.如果a⊥?,那么向量a叫做平面?的法向量.?la課本P33已知向量ABa?和軸l,e是l上與l同方向的單位向量.作
2025-01-08 13:41
【總結(jié)】高考鏈接三視圖專題訓練[2011·安徽卷]一個空間幾何體的三視圖如圖1-1所示,則該幾何體的表面積為( )圖1-1A.48B.32+8C.48+8D.80[2011·安徽卷]C 【解析】由三視圖可知本題所給的是一個底面為等腰梯形的放倒的直四棱柱(如圖所示),所以該直四棱柱的表面積為S=2××(
2025-03-25 06:43
【總結(jié)】第一篇:立體幾何的證明方法 立體幾何的證明方法 1.線面平行的證明方法 2.兩線平行的證明方法 7、空間平行、垂直之間的轉(zhuǎn)化與聯(lián)系: 應用判定定理時,注意由“低維”到“高維”:“線線...
2024-11-15 05:58
【總結(jié)】空間向量的引入為代數(shù)方法處理立體幾何問題提供了一種重要的工具和方法,解題時,可用定量的計算代替定性的分析,從而回避了一些嚴謹?shù)耐评碚撟C。求空間角與距離是立體幾何的一類重要的問題,也是高考的熱點之一。本節(jié)課主要是討論怎么樣用向量的辦法解決空間角與距離的問題。建立空間直角坐標系,解立體幾何題1122330???abab
2024-11-09 01:53
【總結(jié)】第35講空間幾何體的結(jié)構第36講空間幾何體的三視圖和直觀圖第37講平面的基本性質(zhì)第38講空間中的平行關系│知識框架知識框架│知識框架│知識框架1.空間幾何體(1)認識柱、錐、臺、球及其簡單組合體的結(jié)構特征,并能運用
2025-07-22 16:34
【總結(jié)】第一篇:立體幾何的證明策略 立體幾何的證明策略: 幾何法證明 證明平行:3,2,11、線線平行:公理四,10頁 線面平行的性質(zhì)定理,課本20頁面面平行的性質(zhì)定理,36頁 2、線面平行:線面平...
2024-11-12 18:00
【總結(jié)】第六講立體幾何新題型【考點透視】(A),對于異面直線的距離,、直線和平面所成的角、、二面角的平面角、兩個平行平面間的距離的概念.(B)版.①理解空間向量的概念,掌握空間向量的加法、減法和數(shù)乘.②了解空間向量的基本定理,理解空間向量坐標的概念,掌握空間向量的坐標運算.③掌握空間向量的數(shù)量積的定義及其性質(zhì),掌握用直角坐標計算空間向量數(shù)量積公式.④理解直線的方向向量
2025-08-05 18:17
【總結(jié)】華夏學校資料庫1、已知四邊形是空間四邊形,分別是邊的中點(1)求證:EFGH是平行四邊形AHGFEDCB(2)若BD=,AC=2,EG=2。求異面直線AC、BD所成的角和EG、BD所成的角。2、如圖,已知空間四邊形中,,是的中點。求證:(1)平面CDE;AEDBC(2)平面平面。
2025-04-04 05:14
【總結(jié)】高中課程復習專題——數(shù)學立體幾何一空間幾何體㈠空間幾何體的類型1多面體:由若干個平面多邊形圍成的幾何體。圍成多面體的各個多邊形叫做多面體的面,相鄰兩個面的公共邊叫做多面體的棱,棱與棱的公共點叫做多面體的頂點。2旋轉(zhuǎn)體:把一個平面圖形繞它所在的平面內(nèi)的一條定直線旋轉(zhuǎn)形成了封閉幾何體。其中,這條直線稱為
【總結(jié)】1上杭縣高級中學講課人:周文才時間:07年12月14日2345678所以:解:以點C為坐標原點建立空間直角坐標系如圖所示,設則C||所以與所成角的余弦值為9設平面xyz點評:找到
2024-11-12 16:42