【摘要】第二章矩陣及其運(yùn)算§1矩陣???????????????mn2m1mn22221n11211aaaaaaaaaA???????),(ija也可以記成行矩陣(行向量),列矩陣(列向量),n階矩陣(n階方陣)
2024-10-25 01:08
【摘要】線性代數(shù)湖南工業(yè)大學(xué)理學(xué)院主講教師:段向陽(yáng)月年92022第一章第二章第三章第四章第五章第六章第七章答案教學(xué)安排?課程學(xué)時(shí):40學(xué)時(shí)?課程性質(zhì):基礎(chǔ)理論課?考
2025-02-25 06:24
【摘要】線性代數(shù)第一章版權(quán)所有:山東理工大學(xué)理學(xué)院一、行列式的引入二、n階行列式的定義四、小結(jié)思考題§n階行列式的概念三、排列與逆序(另一表達(dá)形式)上頁(yè)下頁(yè)返回線性代數(shù)第一章版權(quán)所有:山東理工大學(xué)理學(xué)院用消元法解二元線性方程組111122121
【摘要】隨風(fēng)潛入夜?jié)櫸锛?xì)無(wú)聲(續(xù))李尚志中國(guó)科學(xué)技術(shù)大學(xué)2021/11/10數(shù)學(xué)實(shí)驗(yàn):幾何變換(x,y)?(x’,y’)?x’=f1(x,y),y’=f2(x,y)?曲線C:x=x(t),y=y(t)?曲線C’:x=f1(x(t),y(t)),
【摘要】§方陣的行列式一、階行列式的定義n111212122212detijnnnnnnnnnaaaaaaaaaann???????1.定性描述:稱(chēng)由階方陣確定的數(shù)為階方陣的行列式,簡(jiǎn)稱(chēng)階行列式AA
2025-01-25 15:16
【摘要】第一章行列式二階、三階行列式一、計(jì)算下列行列式1、2、3、二、解方程1、解:計(jì)算行列式得,因此2、解:計(jì)算行列式得,得,因此n階行列式定義及性質(zhì)一、計(jì)算下列行列式1、2、3、4、5、將第2、3、4列乘以-1加到第一列得6、將第2、3、4行全部加到第1行將第1行乘以-1加到第2
2025-01-13 21:45
【摘要】12022線性代數(shù)期末試題及參考答案一、判斷題(正確填T,錯(cuò)誤填F。每小題2分,共10分)1.A是n階方陣,R??,則有AA???。()2.A,B是同階方陣,且0?AB,則111)(????ABAB。()3.如
2025-01-12 17:51
2025-01-15 10:36
【摘要】第一篇:線性代數(shù)試題 線性代數(shù)試題(一) 一、填空(每題2分,共20分)(n12…(n-1))=。 ,第三列元素分別為-2,3,1,其余子式分別為9,6,24,則D=。 ,結(jié)論是。 ,設(shè)...
2024-10-29 06:53
【摘要】1班級(jí):時(shí)間:年月日;星期教學(xué)目的掌握特征值與特征向量的概念、求法以及性質(zhì)。掌握相似矩陣的概念和性質(zhì),理解方陣A對(duì)角化的充要條件,會(huì)用實(shí)對(duì)稱(chēng)矩陣對(duì)角化的基本方法將簡(jiǎn)單對(duì)稱(chēng)矩陣對(duì)角化作業(yè)重點(diǎn)相似矩陣與對(duì)稱(chēng)矩陣對(duì)角化練習(xí)冊(cè)第43頁(yè)-46頁(yè)第5題
2024-12-14 01:39
【摘要】主講:郭智第四章線性方程組§1齊次線性方程組§2非齊次線性方程組§4-1加減消元法·消元法求解·解的存在性問(wèn)題一、消元法設(shè)線性方程a11x1+a12x2+…+anxn=b1a21x1+a22x2+…+a2nxn=b2…
2024-10-22 21:32
【摘要】習(xí)題設(shè)行列式,則第四行各元素余子式之和的值為.2235007022220403???D111100
2025-01-23 13:25
【摘要】向量組的秩向量組的極大線性無(wú)關(guān)組與秩歐氏空間向量空間的基維數(shù)坐標(biāo)基變換與坐標(biāo)變換北京科技大學(xué)《線性代數(shù)》課程組012:,,,rA???線性無(wú)關(guān)向量組,定義簡(jiǎn)稱(chēng)為極大無(wú)關(guān)組或最大無(wú)關(guān)組.12,,,r???若向量組A的一個(gè)部分組A0:滿足(1)
2025-02-27 12:43
【摘要】第三章矩陣的初等變換與線性方程組知識(shí)點(diǎn)回顧:克拉默法則結(jié)論1如果線性方程組(1)的系數(shù)行列式不等于零,則該線性方程組一定有解,而且解是唯一的.(P.24定理4)結(jié)論1′如果線性方程組無(wú)解或有兩個(gè)不同的解,則它的系數(shù)行列式必為零.(4')設(shè)11112211211222
2025-01-25 15:17
【摘要】馮媛難馮媛2,,.mnAkkkmknkAkAk???在矩陣中任取行列(),位于這些行列交叉處的個(gè)元素不改變它們?cè)谥兴幍奈恢么涡蚨玫碾A行列式,稱(chēng)為矩陣的階子式一、矩陣秩的概念和性質(zhì)
2025-01-25 22:49