【摘要】第二章矩陣及其運(yùn)算§1矩陣???????????????mn2m1mn22221n11211aaaaaaaaaA???????),(ija也可以記成行矩陣(行向量),列矩陣(列向量),n階矩陣(n階方陣)
2024-10-25 01:08
【摘要】線性代數(shù)湖南工業(yè)大學(xué)理學(xué)院主講教師:段向陽月年92022第一章第二章第三章第四章第五章第六章第七章答案教學(xué)安排?課程學(xué)時(shí):40學(xué)時(shí)?課程性質(zhì):基礎(chǔ)理論課?考
2025-02-25 06:24
【摘要】隨風(fēng)潛入夜?jié)櫸锛?xì)無聲(續(xù))李尚志中國(guó)科學(xué)技術(shù)大學(xué)2021/11/10數(shù)學(xué)實(shí)驗(yàn):幾何變換(x,y)?(x’,y’)?x’=f1(x,y),y’=f2(x,y)?曲線C:x=x(t),y=y(t)?曲線C’:x=f1(x(t),y(t)),
【摘要】§方陣的行列式一、階行列式的定義n111212122212detijnnnnnnnnnaaaaaaaaaann???????1.定性描述:稱由階方陣確定的數(shù)為階方陣的行列式,簡(jiǎn)稱階行列式AA
2025-01-25 15:16
【摘要】馮媛難馮媛2,,.mnAkkkmknkAkAk???在矩陣中任取行列(),位于這些行列交叉處的個(gè)元素不改變它們?cè)谥兴幍奈恢么涡蚨玫碾A行列式,稱為矩陣的階子式一、矩陣秩的概念和性質(zhì)
2025-01-25 22:49
【摘要】1班級(jí):時(shí)間:年月日;星期教學(xué)目的掌握特征值與特征向量的概念、求法以及性質(zhì)。掌握相似矩陣的概念和性質(zhì),理解方陣A對(duì)角化的充要條件,會(huì)用實(shí)對(duì)稱矩陣對(duì)角化的基本方法將簡(jiǎn)單對(duì)稱矩陣對(duì)角化作業(yè)重點(diǎn)相似矩陣與對(duì)稱矩陣對(duì)角化練習(xí)冊(cè)第43頁-46頁第5題
2024-12-14 01:39
【摘要】主講:郭智第四章線性方程組§1齊次線性方程組§2非齊次線性方程組§4-1加減消元法·消元法求解·解的存在性問題一、消元法設(shè)線性方程a11x1+a12x2+…+anxn=b1a21x1+a22x2+…+a2nxn=b2…
2024-10-22 21:32
【摘要】習(xí)題設(shè)行列式,則第四行各元素余子式之和的值為.2235007022220403???D111100
2025-01-23 13:25
【摘要】向量組的秩向量組的極大線性無關(guān)組與秩歐氏空間向量空間的基維數(shù)坐標(biāo)基變換與坐標(biāo)變換北京科技大學(xué)《線性代數(shù)》課程組012:,,,rA???線性無關(guān)向量組,定義簡(jiǎn)稱為極大無關(guān)組或最大無關(guān)組.12,,,r???若向量組A的一個(gè)部分組A0:滿足(1)
2025-02-27 12:43
【摘要】第三章矩陣的初等變換與線性方程組知識(shí)點(diǎn)回顧:克拉默法則結(jié)論1如果線性方程組(1)的系數(shù)行列式不等于零,則該線性方程組一定有解,而且解是唯一的.(P.24定理4)結(jié)論1′如果線性方程組無解或有兩個(gè)不同的解,則它的系數(shù)行列式必為零.(4')設(shè)11112211211222
2025-01-25 15:17
【摘要】.,數(shù)是唯一確定的梯形矩陣中非零行的行梯形,行階把它變?yōu)樾须A變換總可經(jīng)過有限次初等行任何矩陣nmA?.,,12階子式的稱為矩陣階行列式,的中所處的位置次序而得變它們?cè)诓桓脑靥幍膫€(gè)),位于這些行列交叉列(行中任取矩陣在定義kAkAknkmkkkAnm???一、矩陣秩的概念矩陣的秩
2024-10-09 01:05
【摘要】ProfLiubiyuMatrix(matrices)矩陣Acolumnvector行向量Asquarematrix方陣Arowvector列向量Adiagonalmatrix對(duì)角陣Anidentitymatrix單位陣Anuppertriangularmatrix上
【摘要】2021/11/101線性代數(shù)第14講二次型2021/11/102二次型就是二次多項(xiàng)式.在解析幾何中討論的有心二次曲線,當(dāng)中心與坐標(biāo)原點(diǎn)重合時(shí),其一般方程是ax2+2bxy+cy2=f(1)方程的左端就是x,y的一個(gè)二次齊次多項(xiàng)式.為了便于研究這個(gè)二次曲線的幾何性質(zhì),通過基變換(坐標(biāo)變換)
【摘要】第五章相似矩陣及二次型§1向量的內(nèi)積、長(zhǎng)度及正交性定義:設(shè)有n維向量令則稱[x,y]為向量x和y的內(nèi)積.1122[,]nnxyxyxyxy????向量的內(nèi)積1122,,nnxyxyxyxy????
2024-12-14 01:18
【摘要】上頁下頁鈴結(jié)束返回首頁1線性代數(shù)上頁下頁鈴結(jié)束返回首頁2線性代數(shù)緒論上頁下頁鈴結(jié)束返回首頁3問題:1、什么是線性代數(shù)?2、為什么要學(xué)線性代數(shù)?3、怎么做才能學(xué)好線性代數(shù)?上頁下頁鈴結(jié)束返回首頁4一、什么是線性代數(shù)?(
2025-01-20 18:09