【摘要】高中數(shù)學(xué)《利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性》教學(xué)實(shí)踐與思考一、對(duì)教材的認(rèn)識(shí)導(dǎo)數(shù)的方法是今后全面研究微積分的重要方法和基本工具,在其它學(xué)科中同樣具有十分重要的作用:在物理學(xué)、經(jīng)濟(jì)學(xué)等其它學(xué)科和生產(chǎn)、生活的各個(gè)領(lǐng)域都有廣泛的應(yīng)用。導(dǎo)數(shù)的出現(xiàn)推動(dòng)了人類(lèi)事業(yè)向前發(fā)展;因此,在高中數(shù)學(xué)課程中設(shè)置導(dǎo)數(shù)的方法有其獨(dú)特的價(jià)值和作用。本章新課程中設(shè)置的內(nèi)容與傳統(tǒng)內(nèi)容有很
2024-08-10 16:20
【摘要】1北京市中小學(xué)“京教杯”青年教師教學(xué)設(shè)計(jì)大賽教學(xué)設(shè)計(jì)參與人員姓名單位聯(lián)系方式設(shè)計(jì)者彭青松北京醫(yī)學(xué)院附屬中學(xué)13717900631實(shí)施者彭青松北京醫(yī)學(xué)院附屬中學(xué)13717900631指導(dǎo)者李寧北京大學(xué)附屬中學(xué)13601082518張思明北京大學(xué)附屬中學(xué)010
2024-12-03 10:10
【摘要】一輪復(fù)習(xí)學(xué)案§應(yīng)用(1)姓名☆復(fù)習(xí)目標(biāo):1.理解可導(dǎo)函數(shù)的單調(diào)性與其導(dǎo)數(shù)的關(guān)系;2.了解可導(dǎo)函數(shù)在某點(diǎn)取得極值的必要條件和充分條件(導(dǎo)數(shù)在極值點(diǎn)兩側(cè)異號(hào))。?基礎(chǔ)熱身:1.3()31fxaxx???對(duì)于?
2024-12-12 01:48
【摘要】12?分的創(chuàng)立導(dǎo)致了微積期的研究數(shù)量的變化規(guī)律進(jìn)行長(zhǎng)我們可以對(duì)通過(guò)研究函數(shù)這些性質(zhì)常重要的或最小值等性質(zhì)是非與慢以及函數(shù)的最大值減的快了解函數(shù)的增與減、增研究函數(shù)時(shí)型化規(guī)律的重要數(shù)學(xué)模函數(shù)是描述客觀世界變,,.,..,,數(shù)中的作用可以體會(huì)導(dǎo)數(shù)在研究函從中你的性質(zhì)我們運(yùn)用導(dǎo)數(shù)研究函數(shù)下面34?????
2024-11-22 15:24
【摘要】函數(shù)的單調(diào)性與導(dǎo)數(shù)(4).對(duì)數(shù)函數(shù)的導(dǎo)數(shù):.1)(ln)1(xx??.ln1)(log)2(axxa??(5).指數(shù)函數(shù)的導(dǎo)數(shù):.)()1(xxee??).1,0(ln)()2(????aaaaaxxxxcos
2024-11-22 12:09
【摘要】1高二數(shù)學(xué)課堂任務(wù)單課題:任務(wù)一:分析函數(shù)()3lnCttt???的單調(diào)性任務(wù)二:分析豎直上拋小沙袋過(guò)程中,位移X是時(shí)間t的函數(shù),設(shè)X=X(t),(1).畫(huà)出位移
2024-11-27 15:13
【摘要】利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性【教學(xué)目標(biāo)】了解并掌握函數(shù)單調(diào)性的定義以及導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系,會(huì)利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,會(huì)利用導(dǎo)數(shù)畫(huà)出函數(shù)的大致圖像?!窘虒W(xué)重點(diǎn)】利用導(dǎo)數(shù)求單調(diào)區(qū)間【教學(xué)難點(diǎn)】導(dǎo)數(shù)與單調(diào)性的關(guān)系一、課前預(yù)習(xí)(閱讀教材24--25頁(yè),填寫(xiě)知識(shí)點(diǎn).):怎樣判斷函數(shù)的單調(diào)性?1、__________2、__
2024-12-07 11:30
【摘要】2020/12/252020/12/25?分的創(chuàng)立導(dǎo)致了微積期的研究數(shù)量的變化規(guī)律進(jìn)行長(zhǎng)我們可以對(duì)通過(guò)研究函數(shù)這些性質(zhì)常重要的或最小值等性質(zhì)是非與慢以及函數(shù)的最大值減的快了解函數(shù)的增與減、增研究函數(shù)時(shí)型化規(guī)律的重要數(shù)學(xué)模函數(shù)是描述客觀世界變,,.,..,,數(shù)中的作用可以體會(huì)導(dǎo)數(shù)在研究函從中你的性質(zhì)我們運(yùn)用導(dǎo)數(shù)研究函數(shù)下面2020
【摘要】 函數(shù)的單調(diào)性 課題分析: 函數(shù)的單調(diào)性是函數(shù)重要性質(zhì)之一,它既是我們后續(xù)研究(考察)指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、三角函數(shù)等函數(shù)甚至更復(fù)雜的函數(shù)的單調(diào)性的理論基礎(chǔ),是我們研究函數(shù)最值先導(dǎo)理論,同時(shí)它也是...
2025-04-03 03:51
【摘要】了解函數(shù)單調(diào)性和導(dǎo)數(shù)的關(guān)系/能利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,會(huì)求函數(shù)的單調(diào)區(qū)間/了解函數(shù)在某點(diǎn)取得極值的必要條件和充分條件/會(huì)用導(dǎo)數(shù)求函數(shù)的極大值、極小值/會(huì)求閉區(qū)間上函數(shù)的最大值、最小值/會(huì)利用導(dǎo)數(shù)解決某些實(shí)際問(wèn)題導(dǎo)數(shù)的應(yīng)用1.函數(shù)在某區(qū)間上單調(diào)的充分條件一般地,設(shè)函數(shù)y=f(x)在某個(gè)區(qū)間內(nèi)有導(dǎo)數(shù),如果在這個(gè)區(qū)間內(nèi)y′
2024-10-03 15:55
【摘要】“函數(shù)的單調(diào)性”的教學(xué)設(shè)計(jì)一、教材分析地位與作用:“函數(shù)的單調(diào)性”既是一個(gè)重要的數(shù)學(xué)概念,又是函數(shù)的一個(gè)重要性質(zhì).,在利用函數(shù)觀點(diǎn)解決問(wèn)題中起著十分重要的作用.重點(diǎn)與難點(diǎn):重點(diǎn)是函數(shù)的單調(diào)性定義理解(從形到數(shù),從文字語(yǔ)言到符號(hào)語(yǔ)言).難點(diǎn)是利用函數(shù)的單調(diào)性定義判斷、證明函數(shù)的單調(diào)性.二、教學(xué)目標(biāo)知識(shí)目標(biāo):(1)通過(guò)已學(xué)過(guò)的函數(shù)特別是二次函數(shù),理解函數(shù)的單調(diào)性;(2)學(xué)
2025-06-10 23:22
【摘要】第一篇:高中數(shù)學(xué)必修1--函數(shù)單調(diào)性教學(xué)心得 函數(shù)單調(diào)性 “函數(shù)單調(diào)性”是高中數(shù)學(xué)必修1教材中函數(shù)的一個(gè)重要性質(zhì),是研究比較幾個(gè)數(shù)的大小、對(duì)函數(shù)作定性分析、以及與其他知識(shí)的綜合應(yīng)用上都有廣泛的應(yīng)用...
2024-10-11 20:25
【摘要】§函數(shù)的簡(jiǎn)單性質(zhì)2.函數(shù)的單調(diào)性(一)一、基礎(chǔ)過(guò)關(guān)1.下列函數(shù)中,在(-∞,0]內(nèi)為增函數(shù)的是________.(填序號(hào))①y=x2-2;②y=3x;③y=1+2x;④y=-(x+2)2.2.如果函數(shù)f(x)在[a,b]上是增函數(shù),對(duì)于任意的x1,x2∈[a,b]
2024-12-12 20:19
【摘要】函數(shù)的單調(diào)性一、選擇題:(每小題6分,共36分)。,在區(qū)間(0,1)上是增函數(shù)的是()A.xy?B.xy??3C.xy1?42???xy2.函數(shù)bxky???)12(
2024-12-07 12:23
【摘要】函數(shù)的單調(diào)性(二)一、基礎(chǔ)過(guò)關(guān)1.函數(shù)y=-x+1在區(qū)間????12,2上的最大值是________.2.函數(shù)y=x+2x-1的最小值為_(kāi)_______.3.函數(shù)y=2|x|+1的值域是________.4.函數(shù)f(x)=?????2x+6,x∈[1,2]x+7,
2024-12-12 05:55