【導(dǎo)讀】、目標(biāo)函數(shù)、可行解、可行域、最優(yōu)解等基本概念.,并能應(yīng)用它解決一些簡單的實(shí)際問題.不等式(組)或等式叫作.作;使目標(biāo)函數(shù)取得最大或最小值的可行解叫線性規(guī)劃問題的.作一組與直線l0的直線系或平移直線l0;移:移動直線ax+by=0,確定使z=ax+by取得最大值或最小值的點(diǎn);則目標(biāo)函數(shù)z=x+2y的取值范圍是().x、y滿足約束條件則z=x+y的最大值為.已知變量x、y滿足下列條件:試求:z=4x-y的最大值.當(dāng)n≥2時,an+1=Sn+1,an=Sn-1+1,兩式相減,得an+1-an=Sn-Sn-1=an,即an+1=2an,則。列,∴=+(n-1)×1=,∴an=,∴a10=-.由遞推關(guān)系,得an-1-an-2=3n-5,?當(dāng)n=1時,1=a1==1,適合上式,探究一:設(shè)an+t=3,則an=3an-1+2t,{an+t},然后利用通項(xiàng)公式即可求出;①-②得:an+1-an=p,由等比數(shù)列的通項(xiàng)公式求an-an-1=pn-1,再用累加法求。探究二:∵an-an-1=2n-1(n≥2),上述n-1個等式相加可得:an-a1=n2-1,探究三:由b1=a2-a1≠0,可得:b2=a3-a2=f-f=k≠0.由題設(shè)條件,當(dāng)n≥2時,====k,故數(shù)列{bn}是公比為k的等比數(shù)列.