【導(dǎo)讀】當(dāng)-1<x<13時(shí),y′<0;當(dāng)x>13或x<-1時(shí),y′>0.y′=6x2-12x-18,令f′=0,解得x1=-1,x2=3.因此,當(dāng)x=-1時(shí),f有極大值f(-1)=17,當(dāng)x=3時(shí),f有極小值f=-47.4.已知函數(shù)y=ax3-15x2+36x-24在x=3處有極值,則函數(shù)?!選=3是極值點(diǎn),令y′<0,即6x2-30x+36<0,即x2-5x+6<0,則f′=3ax2+2bx+c,27a+9b+3c+d=0,f′=12x2-2ax-2b,∴f′=12-2a-2b=0,∴a+b=6.∴ab≤9,當(dāng)且僅當(dāng)a=b=3時(shí)等號(hào)成立,∴ab的最大值為9.由f=ex-2x+2a,x∈R知f′=ex-2,x∈R.,經(jīng)檢驗(yàn),符合題意,故a=-13,b=12.當(dāng)x變化時(shí),f′,f的變化情況如下表;因?yàn)榍€y=f在點(diǎn)處與直線y=8相切,8-6a+b=8.解得a=4,b=24.當(dāng)a<0時(shí),f′>0,函數(shù)f的單調(diào)遞增區(qū)間為;