【導(dǎo)讀】[解析]f=cosπ4=22,∴f′=0.[解析]f′=α·xα-1,5.設(shè)函數(shù)f=cosx則??????π2′=0′=0,故選A.[解析]∵y′=1x=k,∴x=1k,切點(diǎn)坐標(biāo)為??????又切點(diǎn)在曲線y=lnx上,∴l(xiāng)n1k=1,10.已知曲線y=x+lnx在點(diǎn)(1,1)處的切線與曲線y=ax2. +(a+2)x+1相切,則a=________.∴切線方程為y=1×(x-1),即x-y-1=0.[解析]由圖象可知,物體在OA,AB,BC三段都做勻速運(yùn)動(dòng),位移是時(shí)間的一次函數(shù),因此其導(dǎo)函數(shù)為常數(shù)函數(shù),并且直線OA,直線AB的斜率為正且kOA>kAB,直線BC的斜率為負(fù),3.設(shè)f0=sinx,f1=f0′,f2=f1′,…fn+1=fn′,n∈N+,則。按以上規(guī)律可知:f2021=f3=-cosx,故選D.∴-ex0=-x0·ex0,即·ex0=0,k1=y(tǒng)′|x=a=1xln2|x=a=1aln2.[解析]由f=x2-2x-4lnx,得函數(shù)定義域?yàn)椋襢′=2x-2-4x=