【導(dǎo)讀】①42=16,log416=2;②102=100,log10100=2;2=2,log42=12;以10為底的對(duì)數(shù)叫做常用對(duì)數(shù),并把常用對(duì)數(shù)log10N簡記為lgN;為底的對(duì)數(shù),叫自然對(duì)數(shù),并把自然對(duì)數(shù)logeN簡記為lnN.在指數(shù)式中N>0,故零和負(fù)數(shù)沒有對(duì)數(shù),即式子logaN中N必須大于0;設(shè)a>0,a≠1,則有a1=a,∴l(xiāng)ogaa=1,即底數(shù)的對(duì)數(shù)為1.如果把x=logaN中的N寫成ax,則有:logaax=x.當(dāng)心記憶錯(cuò)誤:loga≠logaM·logaN;loga≠logaM±logaN.例如:①log23·log32=______________;證明:logab·logba=lgblga·lgalgb=1.如log2[(-4)×(-3)]是存在的,但log2(-4)與log2(-3)均不存在,故log2[(-。解析:由題知lg3lg8=p,∴p=lg33lg2,q=lg5lg3.∴l(xiāng)g5=qlg3=q=3pqlg105=3pq,即:lg5=3pq-3pqlg5,∴l(xiāng)g5=3pq1+3pq.5.若y=log56×log67×log78×log89×log910,則y=