【導(dǎo)讀】能寫出它們的正交分解式嗎?21,ee的模與數(shù)量積分別是多少?由此你能推出a·b坐標(biāo)表達(dá)式嗎?A(1,2),B,C,求證:AB⊥AC。=,求a·b,|a|,|b|;cos<a,b>. 規(guī)律總結(jié):已知a=(),11yx,),(22yxb?表示成兩個(gè)向量的夾角2.BACCOS?完成下列表格的填寫
【總結(jié)】三角函數(shù)的誘導(dǎo)公式的教學(xué)設(shè)計(jì)一、指導(dǎo)思想與理論依據(jù)數(shù)學(xué)是一門培養(yǎng)人的思維,發(fā)展人的思維的重要學(xué)科。因此,在教學(xué)中,不僅要使學(xué)生“知其然”而且要使學(xué)生“知其所以然”。所以在學(xué)生為主體,教師為主導(dǎo)的原則下,要充分揭示獲取知識(shí)和方法的思維過(guò)程。因此本節(jié)課我以建構(gòu)主義的“創(chuàng)設(shè)問(wèn)題情境——提出數(shù)學(xué)問(wèn)題——嘗試解決問(wèn)題——驗(yàn)
2025-11-10 11:25
【總結(jié)】1、向量的基本概念和線性運(yùn)算復(fù)習(xí)課復(fù)習(xí)目標(biāo).自學(xué)指導(dǎo)知識(shí)梳理1.向量的有關(guān)概
2025-11-19 00:30
【總結(jié)】《向量數(shù)量積的運(yùn)算律》教學(xué)設(shè)計(jì)一、情景引入知識(shí)回顧:平面向量數(shù)量積的定義及幾何意義(學(xué)生回答)問(wèn)題導(dǎo)思:向量的數(shù)量積是否具有類似于數(shù)量乘法那樣的運(yùn)算律?⑴交換律:ba?=;⑵結(jié)合律:??ba??==;⑶分配律:??cba??=。
2025-11-09 16:44
【總結(jié)】§平面向量數(shù)量積的運(yùn)算律(課前預(yù)習(xí)案)班級(jí):___姓名:________編寫:一、新知導(dǎo)學(xué)1.交換律:a?b=;2.?dāng)?shù)乘結(jié)合律:(?a)?b==;3.分配律:(a+b)?c=.說(shuō)明
2025-11-18 23:43
【總結(jié)】2.3.1向量數(shù)量積的物理背景與定義一、學(xué)習(xí)要點(diǎn):向量數(shù)量積的定義、投影、數(shù)量積的性質(zhì)二、學(xué)習(xí)過(guò)程:一.復(fù)習(xí)回顧:數(shù)乘運(yùn)算的定義及運(yùn)算律:二.新課學(xué)習(xí)::如圖:一個(gè)物體在力F的作用下產(chǎn)生位移s,那么力F所做的功應(yīng)當(dāng)怎樣計(jì)算?W=|F|?|s|cos?其中力F和位移s是向量,?是F與s
【總結(jié)】第二章一、選擇題1.若a·c=b·c(c≠0),則()A.a(chǎn)=bB.a(chǎn)≠bC.|a|=|b|D.a(chǎn)在c方向上的正射影的數(shù)量與b在c方向上的正射影的數(shù)量必相等[答案]D[解析]∵a·c=b·c,∴|a|·|c|cos&
【總結(jié)】2020/12/25平面向量數(shù)量積運(yùn)算律2020/12/25規(guī)定:零向量與任意向量的數(shù)量積為0,即0.??0a1OBba向量叫做向量在向量上的正射影已知兩個(gè)非零向量a和b,它們的夾角為?,我們把數(shù)量
2025-11-09 12:10
【總結(jié)】學(xué)法指導(dǎo)????向量的數(shù)量積?已知兩個(gè)非零向量與,它們的?夾角為θ,我們把數(shù)量叫做與的數(shù)量積(或內(nèi)積,點(diǎn)乘),ab|||cos|ab?ab||||cosabab???思考:向量的數(shù)量積
2025-11-08 23:32
【總結(jié)】向量數(shù)量積的運(yùn)算律復(fù)習(xí)回顧正射影的數(shù)量cosla??(內(nèi)積)cos,??ababa·b=:(1).a?b?a?b=0(2).a?a=|a|2或aaa??||(3).cos?=||||baba?范圍0≤〈a,b〉≤π;平面
【總結(jié)】第3課時(shí)平面向量的數(shù)量積基礎(chǔ)過(guò)關(guān)1.兩個(gè)向量的夾角:已知兩個(gè)非零向量和,過(guò)O點(diǎn)作=,=,則∠AOB=θ(0°≤θ≤180°)叫做向量與的.當(dāng)θ=0°時(shí),與;當(dāng)θ=180°時(shí),與;如果與的夾角是90°,我們說(shuō)與垂直,記作.2.兩個(gè)向量的數(shù)量積的定義:已知兩
2025-06-08 00:02
【總結(jié)】復(fù)習(xí):向量數(shù)量積的定義是什么?如何求向量夾角?向量的運(yùn)算律有哪些?平面向量的數(shù)量積有那些性質(zhì)?答:babababa????????cos,cos運(yùn)算律有:)()().(2bababa????????abba???.1cbcacba?????
2025-11-01 08:36
【總結(jié)】第二章一、選擇題1.已知數(shù)軸上A點(diǎn)坐標(biāo)為-5,AB=-7,則B點(diǎn)坐標(biāo)是()A.-2B.2C.12D.-12[答案]D[解析]∵xA=-5,AB=-7,∴xB-xA=-7,∴xB=-12.2.設(shè)a與b是兩個(gè)不共線的向量,且向量a+λb與-(b
2025-11-18 23:46
【總結(jié)】自學(xué)目標(biāo)1、掌握平行向量基本定理;2、掌握軸上向量的座標(biāo)及其運(yùn)算。學(xué)習(xí)過(guò)程[來(lái)源:.Com]一、課前準(zhǔn)備(預(yù)習(xí)教材77頁(yè)~79頁(yè),找出疑惑之處)二、新課導(dǎo)學(xué)1、向量共線的條件2、平行向量基本定理:3、單位向量:4、軸上向量的座標(biāo)及其運(yùn)算:①已知軸l,取單位向
【總結(jié)】§向量的減法(課前預(yù)習(xí)案)班級(jí):___姓名:________編寫:一、新知導(dǎo)學(xué)1、如果把兩個(gè)向量的始點(diǎn)放在一起,則這兩個(gè)向量的差是以為起點(diǎn),為終點(diǎn)的向量。2、一個(gè)向量BA等于它的終點(diǎn)相對(duì)于點(diǎn)O的位置向量___減去它的始點(diǎn)相對(duì)于點(diǎn)O的位置向量___,或簡(jiǎn)記為
【總結(jié)】撰稿教師:李麗麗學(xué)習(xí)目標(biāo)1、理解平面向量的正交分解。聯(lián)系直角坐標(biāo)系,研究向量正交分解的坐標(biāo)運(yùn)算。2、會(huì)用坐標(biāo)表示平面向量的加法、減與數(shù)乘運(yùn)算。學(xué)習(xí)過(guò)程一、課前準(zhǔn)備(預(yù)習(xí)教材99頁(yè)~102頁(yè),找出疑惑之處)二、新課導(dǎo)學(xué)(一)向量的正交分解1、如果兩個(gè)向量的基線互相垂直,則稱這兩個(gè)向量,