【導(dǎo)讀】已知質(zhì)點(diǎn)M按規(guī)律s=2t2+3作直線運(yùn)動(dòng),某一物體的運(yùn)動(dòng)規(guī)律為s=t3-t2+2t+5.則物體在2s時(shí)的瞬時(shí)速度為_(kāi)____________.利用平均變化率的求解步驟來(lái)解決問(wèn)題.即平均速度,當(dāng)Δt越小,∴當(dāng)Δt→0時(shí),解題時(shí)要注意式子的整體代入,不要有所遺漏.
【總結(jié)】二倍角例題講解兩角和與差的三角函數(shù)以及由它們推出的倍角公式是平面三角學(xué)的重要內(nèi)容,這部分內(nèi)容是同角三角函數(shù)關(guān)系及誘導(dǎo)公式的發(fā)展,是三角變換的基礎(chǔ).它揭示了復(fù)角三角函數(shù)與單角三角函數(shù)間的相互關(guān)系和內(nèi)在聯(lián)系.是研究復(fù)角三角函數(shù)的性質(zhì)和應(yīng)用三角函數(shù)知識(shí)解決有關(guān)問(wèn)題的有力工具.三角變換涉及范圍很廣,包括求值、化簡(jiǎn)、恒等證明、三角形形狀的判定、三角不等式的證明,三
2024-12-05 06:37
【總結(jié)】最大值、最小值問(wèn)題學(xué)習(xí)目標(biāo):理解并掌握函數(shù)最大值與最小值的意義及其求法.弄請(qǐng)函數(shù)極值與最值的區(qū)別與聯(lián)系.養(yǎng)成“整體思維”的習(xí)慣,提高應(yīng)用知識(shí)解決實(shí)際問(wèn)題的能力.學(xué)習(xí)重點(diǎn):求函數(shù)的最值及求實(shí)際問(wèn)題的最值.學(xué)習(xí)難點(diǎn):求實(shí)際問(wèn)題的最值.掌握求最值的方法關(guān)鍵是嚴(yán)格套用求最值的步驟,突破難點(diǎn)要把實(shí)際問(wèn)題“數(shù)學(xué)化”,即建立數(shù)學(xué)模型.學(xué)
2024-12-05 06:35
【總結(jié)】-*-本章整合網(wǎng)絡(luò)構(gòu)建專題探究變化率與導(dǎo)數(shù)變化率平均變化率瞬時(shí)變化率導(dǎo)數(shù)導(dǎo)數(shù)的概念導(dǎo)數(shù)的幾何意義導(dǎo)數(shù)的計(jì)算定義法公式法導(dǎo)數(shù)的四則運(yùn)算法則
2024-11-17 08:42
【總結(jié)】不等關(guān)系與不等式1.甲、乙兩人同時(shí)從A到B.甲一半路程步行,一半路程跑步;乙一半時(shí)間步行,一半時(shí)間跑步.如果兩人步行速度、跑步速度均相同,則()A.甲先到BB.乙先到BC.兩人同時(shí)到BD.誰(shuí)先到無(wú)法確定2.設(shè),不等式能成立的個(gè)數(shù)為()A.0B.1C.
2024-12-03 03:12
【總結(jié)】成才之路·數(shù)學(xué)路漫漫其修遠(yuǎn)兮吾將上下而求索北師大版·選修1-1變化率與導(dǎo)數(shù)第三章章末歸納總結(jié)第三章知識(shí)結(jié)構(gòu)2誤區(qū)警示3自主演練5知識(shí)梳理1題型探究4知識(shí)梳理1.平均變化率的定
2024-11-16 23:22
【總結(jié)】實(shí)際問(wèn)題中導(dǎo)數(shù)的意義一、學(xué)習(xí)要求:導(dǎo)數(shù)在實(shí)際生活中的應(yīng)用二、學(xué)習(xí)目標(biāo)能運(yùn)用導(dǎo)數(shù)方法求解有關(guān)利潤(rùn)最大,用料最省,效率最高等最優(yōu)化問(wèn)題,體會(huì)導(dǎo)數(shù)在解決實(shí)際生活問(wèn)題中的作用。三、重點(diǎn)難點(diǎn)用導(dǎo)數(shù)方法解決實(shí)際生活中的問(wèn)題四、要點(diǎn)梳理解應(yīng)用題的基本程序是:讀題建模求解
2024-11-19 23:16
【總結(jié)】知識(shí)點(diǎn)撥:利用導(dǎo)數(shù)求函數(shù)的極值例求下列函數(shù)的極值:1.xxxf12)(3??;2.xexxf??2)(;3..212)(2???xxxf分析:按照求極值的基本方法,首先從方程0)(??xf求出在函數(shù))(xf定義域內(nèi)所有可能的極值點(diǎn),然后按照函數(shù)極值的定義判斷在這些點(diǎn)處是否取得極值.解:1.函
【總結(jié)】解剖高考對(duì)導(dǎo)數(shù)的考查要求高考對(duì)導(dǎo)數(shù)的考查要求是:①了解導(dǎo)數(shù)的實(shí)際背景(如瞬時(shí)速度、加速度、光滑曲線切線的斜率等),掌握函數(shù)在一點(diǎn)處的導(dǎo)數(shù)的定義和導(dǎo)數(shù)的幾何意義,理解導(dǎo)數(shù)的概念;②熟記導(dǎo)數(shù)的基本公式,掌握兩個(gè)函數(shù)和、差、積、商的求導(dǎo)法則,了解復(fù)合函數(shù)的求導(dǎo)法則,會(huì)求某些簡(jiǎn)單函數(shù)的導(dǎo)數(shù);③理解可導(dǎo)函數(shù)的單調(diào)性與其導(dǎo)數(shù)的關(guān)系,了解可導(dǎo)函數(shù)在某點(diǎn)取得極
2024-11-19 23:15
【總結(jié)】導(dǎo)數(shù)與函數(shù)的單調(diào)性一、學(xué)習(xí)目標(biāo)1.會(huì)從幾何直觀探索并了解函數(shù)的單調(diào)性與其導(dǎo)數(shù)之間的關(guān)系,并會(huì)靈活應(yīng)用;2.會(huì)用導(dǎo)數(shù)判斷或證明函數(shù)的單調(diào)性;3.通過(guò)對(duì)函數(shù)單調(diào)性的研究,加深對(duì)函數(shù)導(dǎo)數(shù)的理解,提高用導(dǎo)數(shù)解決實(shí)際問(wèn)題的能力.二、學(xué)習(xí)重、難點(diǎn)靈活應(yīng)用導(dǎo)數(shù)研究與函數(shù)單調(diào)性有關(guān)的問(wèn)題,并能運(yùn)用數(shù)形結(jié)合的思想方法.三、學(xué)習(xí)過(guò)程1.復(fù)
【總結(jié)】3.1《變化的快慢與變化率》§1變化的快慢與變化率樹(shù)高:15米樹(shù)齡:1000年高:15厘米時(shí)間:兩天實(shí)例1分析銀杏樹(shù)雨后春筍實(shí)例2分析物體從某一時(shí)刻開(kāi)始運(yùn)動(dòng),設(shè)s表示此物體經(jīng)過(guò)時(shí)間t走過(guò)的路程,在運(yùn)動(dòng)的過(guò)程中測(cè)得了一些數(shù)據(jù),如下表.t(秒)025
2024-11-18 13:30
【總結(jié)】正弦、余弦例題分析例1.△ABC中已知a=6,36?b,A=30°,求c.我們熟知用正弦定理可得兩解.其實(shí)用余弦定理也可:由??23362366222??????cc得c的二次方程c2-18c+72=0解得c1=12或c2=6.例2.如圖5—43四邊形ABCD中,AB=3,
2024-11-19 23:19
【總結(jié)】高考中導(dǎo)數(shù)問(wèn)題的六大熱點(diǎn)由于導(dǎo)數(shù)其應(yīng)用的廣泛性,為解決函數(shù)問(wèn)題提供了一般性的方法及簡(jiǎn)捷地解決一些實(shí)際問(wèn)題.因此在高考占有較為重要的地位,其考查重點(diǎn)是導(dǎo)數(shù)判斷或論證單調(diào)性、函數(shù)的極值和最值,利用導(dǎo)數(shù)解決實(shí)際問(wèn)題等方面,下面例析導(dǎo)數(shù)的六大熱點(diǎn)問(wèn)題,供參考.一、運(yùn)算問(wèn)題例1已知函數(shù)22()(1)xbfxx???,求導(dǎo)函數(shù)()fx?.
2024-12-05 06:34
【總結(jié)】例題講解:三角恒等變形應(yīng)用舉例[例1]已知sin(3)cos()tan()cot()2(),()cos()nxxxxfxnZnx????????????(1)求52();3f?(2)若34cos(),25????求()f?的值.
2024-11-19 20:36
【總結(jié)】導(dǎo)數(shù)在實(shí)際問(wèn)題中的應(yīng)用教學(xué)目的:1.進(jìn)一步熟練函數(shù)的最大值與最小值的求法;⒉初步會(huì)解有關(guān)函數(shù)最大值、最小值的實(shí)際問(wèn)題教學(xué)重點(diǎn):解有關(guān)函數(shù)最大值、最小值的實(shí)際問(wèn)題.教學(xué)難點(diǎn):解有關(guān)函數(shù)最大值、最小值的實(shí)際問(wèn)題.授課類型:新授課課時(shí)安排:1課時(shí)教具:多媒體、實(shí)物投影儀教學(xué)過(guò)
【總結(jié)】拓展資料:導(dǎo)數(shù)在證明恒等式中的應(yīng)用一、預(yù)備知識(shí)定理1若函數(shù)f(x)在區(qū)間I上可導(dǎo),且x∈I,有f′(x)=0,則x∈I,有f(x)=c(常數(shù)).證明在區(qū)間I上取定一點(diǎn)x0及x∈I.顯然,函數(shù)f(x)在[x0,x]或[x,x0]上滿足拉格朗日定理,有f(x)-f(x0)=f′(ξ)(x