【導(dǎo)讀】的內(nèi)接矩形.記∠COP=?取何值時,矩形ABCD的面積最大?并求出這個最大面。例2:把一段半徑為R的圓木鋸成橫截面為矩形的木料,怎樣鋸法能使橫截面的面積最大?解:如圖,設(shè)矩形長為l,則面積224lRlS??時,2S取得最大值44R,此時S取得最大值22R,矩形的寬為。設(shè)角為自變量,設(shè)對角線與一條邊的夾角為?建立函數(shù)模型利用三角恒等變換解決實(shí)際問題.
【總結(jié)】課題任意角的三角函數(shù)教學(xué)目標(biāo)知識與技能任意角的三角函數(shù)的定義,會求角α的各三角函數(shù)值過程與方法正確理解三角函數(shù)是以實(shí)數(shù)為自變量的函數(shù)情感態(tài)度價值觀學(xué)習(xí)轉(zhuǎn)化的思想,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)治學(xué)、一絲不茍的科學(xué)精神重點(diǎn)任意角的三角函數(shù)的定義;以及這三種函數(shù)的第一組誘導(dǎo)公式。難點(diǎn)用
2024-11-19 23:27
【總結(jié)】課題任意角的三角函數(shù)(二)教學(xué)目標(biāo)知識與技能利用三角函數(shù)線表示正弦、余弦、正切的三角函數(shù)值;利用三角函數(shù)線比較同名三角函數(shù)值的大小及表示角的范圍。過程與方法掌握用單位圓中的線段表示三角函數(shù)值;從而使學(xué)生對三角函數(shù)的定義域、值域有更深的理解。情感態(tài)度價值觀學(xué)習(xí)轉(zhuǎn)化的思想,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)治學(xué)、一絲不茍的科
【總結(jié)】三角函數(shù)模型的簡單應(yīng)用學(xué)習(xí)目標(biāo):會用三角函數(shù)解決一些簡單的實(shí)際問題;體會三角函數(shù)是描述周期變化現(xiàn)象的重要函數(shù)模型.學(xué)習(xí)重點(diǎn):三角函數(shù)的實(shí)際應(yīng)用學(xué)習(xí)難點(diǎn):三角函數(shù)模型的建立【學(xué)法指導(dǎo)】三角函數(shù)是刻畫周期現(xiàn)象的重要模型,利用三角函數(shù)模型解決實(shí)際問題時,要注意充分依據(jù)收集的數(shù)據(jù),畫出“散點(diǎn)圖”,觀察“散點(diǎn)圖”的特征
2024-12-05 01:56
【總結(jié)】任意角的三角函數(shù)課本例題是我們學(xué)習(xí)的模版,我們可以通過模仿它完成其他同類練習(xí),還可以通過掌握它的思想促類旁通、舉一反三。如果在平時學(xué)習(xí)中我們能自己將例題改編成同類題并解決它們,我們的解題水平會有很大的提高。課本例6:若3sin5???,求cos?、?tan的值。題型分析:本題實(shí)際上是考查同角三角函數(shù)關(guān)系中平方關(guān)系以及商數(shù)關(guān)系的直接應(yīng)用。
2024-11-19 20:39
【總結(jié)】任意角的三角函數(shù)【學(xué)習(xí)要求】1.通過借助單位圓理解并掌握任意角的三角函數(shù)定義,了解三角函數(shù)是以實(shí)數(shù)為自變量的函數(shù).2.借助任意角三角函數(shù)的定義理解并掌握正弦、余弦、正切函數(shù)在各象限內(nèi)的符號.3.通過對任意角的三角函數(shù)定義的理解,掌握終邊相同角的同一三角函數(shù)值相等.【學(xué)法指導(dǎo)】1.在初中所學(xué)習(xí)的銳角三角函數(shù)的基礎(chǔ)上過渡到任意角三角函數(shù)的概
【總結(jié)】同角的三角函數(shù)的基本關(guān)系一、關(guān)于教學(xué)內(nèi)容的思考教學(xué)任務(wù):幫助學(xué)生推導(dǎo)同角三角函數(shù)的兩個基本關(guān)系及推論.教學(xué)目的:引導(dǎo)學(xué)生掌握“知一求二”的思路及變形方法。教學(xué)意義:培養(yǎng)學(xué)生認(rèn)識三角關(guān)系式之間相互聯(lián)系的主動性。二、教學(xué)過程1.同角三角函數(shù)的基本關(guān)系:(理解并推導(dǎo))①平方關(guān)系:1cossin22????;②
2024-11-19 19:36
【總結(jié)】利用三角函數(shù)定義解題設(shè)角?的終邊上任意一點(diǎn)P的坐標(biāo)是),(yx,它與原點(diǎn)的距離是r(22yxr??),那么ry??sin,rx??cos,xy??tan,利用三角函數(shù)的定義,可巧妙地解決一類三角函數(shù)題。一、求值:例1:已知31tan??x,求????22coscossin2sin3
【總結(jié)】任意角的三角函數(shù)【學(xué)習(xí)要求】1.掌握正弦、余弦、正切函數(shù)的定義域.2.了解三角函數(shù)線的意義,能用三角函數(shù)線表示一個角的正弦、余弦和正切.3.能利用三角函數(shù)線解決一些簡單的三角函數(shù)問題.【學(xué)法指導(dǎo)】1.三角函數(shù)線是利用數(shù)形結(jié)合的思想解決有關(guān)問題的重要工具,利用三角函數(shù)線可以解或證明三角不等式,求函數(shù)的定義域及比較大小,三角函數(shù)線也是后面將
【總結(jié)】簡單的三角恒等變換一.復(fù)習(xí):二倍角公式:sin22sincos????22cos2cossin?????22tantan21tan?????22cos1???212sin???2()S?2()C?2()T?,,()24R
2025-06-05 22:31
【總結(jié)】【金版學(xué)案】2021-2021學(xué)年高中數(shù)學(xué)第3章三角恒等變換本章知識整合蘇教版必修4網(wǎng)絡(luò)構(gòu)建求值題三角函數(shù)的求值主要有兩類題型,給角求值與給值求值.給角求值一般是利用和、差、倍角公式進(jìn)行變換,使其出現(xiàn)特殊角,若為非特殊角,則應(yīng)變?yōu)榭上セ蚣s分的情況,從而求出其值.給值求值一般應(yīng)先化簡所求的式子
2024-12-05 00:28
【總結(jié)】三角函數(shù)模型的簡單應(yīng)用1.方程|x|=cosx在(-∞,+∞)內(nèi)()A.沒有根B.有且僅有一個根C.有且僅有兩個根D.有無窮多個根解析:結(jié)合函數(shù)y=cosx和y=|x|的圖象可知,方程|x|=cosx有且僅有兩根.答案:C2.電流I(A)隨時間t(s)變化的關(guān)系是I=3s
【總結(jié)】三角函數(shù)模型的簡單應(yīng)用一、備用習(xí)題圖1212是周期為2π的三角函數(shù)y=f(x)的圖象,那么f(x)可寫成()(1+x)(-1-x)(x-1)(1-x)y=x+sin|x
2024-12-05 06:48
【總結(jié)】1.6三角函數(shù)模型的簡單應(yīng)用重點(diǎn):用三角函數(shù)模型來刻畫具有周期變化規(guī)律的實(shí)際問題.難點(diǎn):對問題實(shí)際意義的數(shù)學(xué)解釋,從實(shí)際問題中抽象出三角函數(shù)模型.一、三角函數(shù)在物理等其它學(xué)科中的應(yīng)用各學(xué)科的知識可以相互應(yīng)用,如物理學(xué)中的振動、波的傳播、電流、生物學(xué)中的某些生活規(guī)律等,都可以用三角函數(shù)來模擬.例1彈簧掛著的小球作上下振動,它在時間t(s
【總結(jié)】三角函數(shù)模型的簡單應(yīng)用考查知識點(diǎn)及角度難易度及題號基礎(chǔ)中檔稍難函數(shù)的圖象、解析式問題4、56、7函數(shù)模型的應(yīng)用1、38、9擬合函數(shù)問題2101.如圖,單擺從某點(diǎn)開始來回擺動,離開平衡位置O的距離s(cm)和時間t(s)的函數(shù)解析式為s=6sin??????2πt+π6,那
2024-12-04 23:46
【總結(jié)】三角函數(shù)的誘導(dǎo)公式一、錯解點(diǎn)擊是否存在角α,β,α∈(2??,2?),β∈(0,π),使得等式sin(3π-α)=2cos(2?-β),3cos(-α)=-2cos(π+β)同時成立?若存在,求出α,β的值;若不存在,請說明理由.錯解:將已知條件化為???????,cos2