【導(dǎo)讀】你能解釋這個式子的幾何意義嗎?所以點P的軌跡是焦點為。長軸、短軸分別為、的橢圓。和它到直線(不在上)的距離的比。=c-a),這個就是雙曲常數(shù)線的離心率.當e>1時,點的軌跡是雙曲線.其中是圓錐曲線的,的準線方程是什么?法一:由已知可得a=8,b=6,c=10.因為|PF1|=14<2a,所以P為雙曲線左支上一點,為d,則由雙曲線的定義可得|PF2|-|PF1|=16,的距離為14,求P點到右準線的距離.
【總結(jié)】橢圓【學(xué)習(xí)目標】1.掌握橢圓的標準方程,會求橢圓的標準方程;2.掌握橢圓的簡單幾何性質(zhì),能運用橢圓的標準方程和幾何性質(zhì)處理一些簡單的實際問題;3.了解運用曲線的方程研究曲線的幾何性質(zhì)的思想方法。B級要求【自學(xué)評價】橢圓定義:2.橢圓的標準方程:①焦點在x軸上的方程:,②焦點在y軸上的方程:3.橢圓的簡單幾何性質(zhì):方程
2025-06-07 23:27
【總結(jié)】第2章圓錐曲線與方程(A)(時間:120分鐘滿分:160分)一、填空題(本大題共14小題,每小題5分,共70分)1.已知橢圓的離心率為12,焦點是(-3,0),(3,0),則橢圓方程為______________.2.當a為任意實數(shù)時,直線(2a+3)x+y-4a+2=0恒過定點P,則過點P的拋物
2024-12-05 09:21
【總結(jié)】2021年高中數(shù)學(xué)全套備課精選第二章圓錐曲線與方程章末總結(jié)(含解析)蘇教版選修1-1知識點一圓錐曲線的定義和性質(zhì)對于圓錐曲線的有關(guān)問題,要有運用圓錐曲線定義解題的意識,“回歸定義”是一種重要的解題策略;應(yīng)用圓錐曲線的性質(zhì)時,要注意與數(shù)形結(jié)合思想、方程思想結(jié)合起來.總之,圓錐曲線的定義、性質(zhì)在解題中有重要作用,要注意靈活運用.
【總結(jié)】第2章圓錐曲線與方程(B)(時間:120分鐘滿分:160分)一、填空題(本大題共14小題,每小題5分,共70分)1.以x軸為對稱軸,拋物線通徑長為8,頂點在坐標原點的拋物線的方程為__________.2.雙曲線9x2-4y2=-36的漸近線方程是____________________________.
【總結(jié)】第2章——圓錐曲線[學(xué)習(xí)目標]..、拋物線的定義和幾何圖形..1預(yù)習(xí)導(dǎo)學(xué)挑戓自我,點點落實2課堂講義重點難點,個個擊破3當堂檢測當堂訓(xùn)練,體驗成功[知識鏈接]M到兩個定點F1、F2距離乊和滿足MF1+MF2=
2024-11-18 08:08
【總結(jié)】【課堂新坐標】(教師用書)2021-2021學(xué)年高中數(shù)學(xué)圓錐曲線的共同性質(zhì)課后知能檢測蘇教版選修1-1一、填空題1.若橢圓x225+y29=1上的點P到左焦點的距離為6,則點P到右準線的距離為________.【解析】∵?????PF1+PF2=10PF1=6,∴PF2=4,
2024-12-04 20:01
【總結(jié)】第二章圓錐曲線與方程第1課時圓錐曲線教學(xué)目標:,經(jīng)歷從具體情境中抽象出橢圓模型的過程,掌握它的定義;,感受、了解雙曲線、拋物線的定義.教學(xué)重點:用平面截圓錐面,了解與掌握橢圓、雙曲線、拋物線的定義教學(xué)難點:用平面截圓錐面教學(xué)過程:Ⅰ.問題情境一個平面截一個圓錐面,當平面經(jīng)過
2024-11-19 20:38
【總結(jié)】圓錐曲線同步練習(xí)一、選擇題(每題3分,共30分)?!鰽BC的頂點B、C在橢圓x23+y2=1上,頂點A是橢圓的一個焦點,且橢圓的另外一個焦點在BC邊上,則△ABC的周長是(c)(A)23(B)6(C)43(D)1222
2025-11-06 11:50
【總結(jié)】第二章圓錐曲線與方程1、曲線與方程的定義:2、求曲線方程的兩種類型:橢圓1、橢圓及其標準方程1、畫法3、方程
2025-04-04 05:16
【總結(jié)】雙曲線及其標準方程1.橢圓的定義和等于常數(shù)2a(2a|F1F2|0)的點的軌跡.平面內(nèi)與兩定點F1、F2的距離的1F2F??0,c???0,cXYO??yxM,2.引入問題:差等于常數(shù)的點的軌跡是什么呢?平面內(nèi)與兩定點F1、F2的距離的復(fù)習(xí)|M
2024-11-19 16:21
【總結(jié)】復(fù)習(xí)::到兩定點F1、F2的距離之和為常數(shù)(大于|F1F2|)的動點的軌跡叫做橢圓。:a,b,c的關(guān)系是:a2=b2+c2|)|2(2||||2121FFaaPFPF???當焦點在X軸上時當焦點在Y軸上時)0(12222????babyax)0(12222????
2024-11-18 08:57
【總結(jié)】洪澤外國語中學(xué)程懷宏如何精確地設(shè)計、制作、建造出現(xiàn)實生活中這些橢圓形的物件呢?生活中的橢圓一.問題情境?動畫演示:“神六”飛行注意:橢圓定義中容易遺漏的三處地方:(1)必須在平面內(nèi).(2)兩個定點---兩點間距離確定.(3)繩長--軌跡上任意點到兩定點
2024-11-18 08:56
【總結(jié)】第2章——圓錐曲線的統(tǒng)一定義[學(xué)習(xí)目標].際問題.1預(yù)習(xí)導(dǎo)學(xué)挑戰(zhàn)自我,點點落實2課堂講義重點難點,個個擊破3當堂檢測當堂訓(xùn)練,體驗成功[知識鏈接]?答:1e.M到一個定點F的距離與到一條定直線l的距離乊比為
2024-11-17 23:19
【總結(jié)】第2章——求曲線的方程[學(xué)習(xí)目標],熟悉求曲線方程的五個步驟..1預(yù)習(xí)導(dǎo)學(xué)挑戓自我,點點落實2課堂講義重點難點,個個擊破3當堂檢測當堂訓(xùn)練,體驗成功[知識鏈接]求曲線方程要“建立適當?shù)淖鴺讼怠保@句話怎樣理解.答
【總結(jié)】關(guān)于x軸、y軸、原點對稱圖形方程范圍對稱性頂點離心率)0(1????babyax2222A1(-a,0),A2(a,0)A1(0,-a),A2(0,a)),b(abxay001????2222Rxayay????,或關(guān)于x軸、y軸、原點對稱)1
2024-11-17 17:10