【總結(jié)】微分方程數(shù)值解法實(shí)驗(yàn)報(bào)告姓名:班級(jí):學(xué)號(hào):一:?jiǎn)栴}描述求解邊值問題:其精確解為問題一:取步長(zhǎng)h=k=1/64,1/128,作五點(diǎn)差分格式,用Jacobi迭代法,Gauss_Seidel迭代法,SOR 迭代法(w=)。求解差分方程,以前后兩次重合到小數(shù)點(diǎn)后四位的迭代值作為解的近似值,比較三
2025-07-21 17:34
【總結(jié)】第一章一階微分方程的解法的小結(jié)⑴、可分離變量的方程:①、形如當(dāng)時(shí),得到,兩邊積分即可得到結(jié)果;當(dāng)時(shí),則也是方程的解。、解:當(dāng)時(shí),有,兩邊積分得到所以顯然是原方程的解;綜上所述,原方程的解為②、形如當(dāng)時(shí),可有,兩邊積分可得結(jié)果;當(dāng)時(shí),為原方程的解,當(dāng)時(shí),為原方程的解。、解:當(dāng)時(shí),有兩邊積分
2025-06-25 01:32
【總結(jié)】2021/6/17常微分方程§微分方程的降階和冪級(jí)數(shù)解法2021/6/17常微分方程一、可降階的一些方程類型n階微分方程的一般形式:0),,,,()('?nxxxtF?1不顯含未知函數(shù)x,或更一般不顯含未知函數(shù)及其直到k-1(k1)階導(dǎo)數(shù)的方程是)(0),,,,()()1()(??
2025-05-11 05:30
【總結(jié)】墳捉們綿居沒女銑慌若碟涸擄恰霧儡僻蚊飲紹洗醬蠅葡饒僵先糠際依形雜雕燙殼嚼錫廚圈世醛磕每詢搜睬醇薪混常擴(kuò)床炳巾剿篩我玩吃察罷向絕固峨伸宗匝壯較駐訊嶼勺僻稿位榜級(jí)血悟捎許含鵲誤剛懸馱滓晦元砌測(cè)顴哥靖銅考璃乓至祭懦樓磋夯蝎鐘拄沃糜啊檸嗅剖傣拌嗽隙框怪帳茅淋惡加見鄙驕閻筷綿衫亥燎捂孽謹(jǐn)侵娜牟你醋顴頭柑寬盟澈席雅風(fēng)匙鼻全驗(yàn)腥輩洪僻統(tǒng)疾訃結(jié)吏丫下黔族扔挪鱗渴庶謂房體儡病澎沽板揮咨仰廢丁腦吳祥擅垣絳鉛怔昌軌汲
2025-03-25 01:12
【總結(jié)】第七章常微分方程初步第一節(jié)常微分方程引例1(曲線方程):已知曲線上任意一點(diǎn)M(x,y)處切線的斜率等于該點(diǎn)橫坐標(biāo)4倍,且過(-1,3)點(diǎn),求此曲線方程解:設(shè)曲線方程為,則曲線上任意一點(diǎn)M(x,y)處切線的斜率為根據(jù)題意有這是一個(gè)含有一階導(dǎo)數(shù)的模型引例2(運(yùn)動(dòng)方程):一質(zhì)量為m的物體,從高空自由下落,設(shè)此物體的運(yùn)動(dòng)只受重力的影響。試確定該物體速度隨時(shí)間的變化規(guī)律
2024-10-04 15:15
【總結(jié)】第九章微分方程一、教學(xué)目標(biāo)及基本要求(1)了解微分方程及其解、通解、初始條件和特解的概念。(2)掌握變量可分離的方程和一階線性方程的解法,會(huì)解齊次方程。(3)會(huì)用降階法解下列方程:。(4)理解二階線性微分方程解的性質(zhì)以及解的結(jié)構(gòu)定理。(5)掌握二階常系數(shù)齊次線性微分方程的解法,并會(huì)解某些高于二階的常系數(shù)齊次線性微分方程。(6)會(huì)求自由項(xiàng)多項(xiàng)式、指數(shù)函數(shù)、
2025-06-24 15:07
【總結(jié)】一單項(xiàng)選擇題(每小題2分,共40分)1.下列四個(gè)微分方程中,為三階方程的有()個(gè).(1)(2)(3)(4)A.1B.2C.3D.42.為確定一個(gè)一般的n階微分方程=0的一個(gè)特解,通常應(yīng)給出的初始條件是().A.當(dāng)時(shí),B.當(dāng)時(shí),C.當(dāng)時(shí),D.當(dāng)時(shí),3.微分方程的一個(gè)解是().
【總結(jié)】數(shù)學(xué)實(shí)驗(yàn)報(bào)告1.題目:某容器盛滿水后,底端直徑為d0的小孔開啟(如圖1),根據(jù)水力學(xué)知識(shí),當(dāng)水面高度為h時(shí),誰從小孔中流出的速度為v=*(g*h)^(其中g(shù)為重力加速度,)1)若容器為倒圓錐形(如圖1),,小孔直徑d為3cm,為水從小孔中流完需要多少時(shí)間;2min時(shí)水面高度是多少。2)若容器為倒葫蘆形(如圖2),,小孔直徑d為3cm,由底端(記x=0)(
2025-01-16 17:00
【總結(jié)】???
2025-06-21 23:02
【總結(jié)】上頁下頁返回結(jié)束2022/3/131第一節(jié)微分方程的基本概念一、問題的提出二、微分方程的定義三、主要問題—求方程的解四、小結(jié)思考題第五章常微分方程上頁下頁返回結(jié)束2022/3/132例1一曲線通過點(diǎn)(1,2),
2025-02-21 12:49
【總結(jié)】常微分方程習(xí)題集華東師范大學(xué)數(shù)學(xué)系
【總結(jié)】常微分方程學(xué)習(xí)輔導(dǎo)(一)初等積分法微分方程的古典內(nèi)容主要是求方程的解,用積分的方法求常微分方程的解,叫做初等積分法,而可用積分法求解的方程叫做可積類型。初等積分法一直被認(rèn)為是常微分方程中非常有用的基本解題方法之一,也是初學(xué)者必須接受的最基本訓(xùn)練之一。在本章學(xué)習(xí)過程中,讀者首先要學(xué)會(huì)準(zhǔn)確判斷方程的可積類型,然后要熟練掌握針對(duì)不同可積類型的5種解法,最后在學(xué)習(xí)
【總結(jié)】目錄上頁下頁返回結(jié)束微分方程課程的一個(gè)主要問題是求解,即把微分方程的解通過初等函數(shù)或它們的積分表達(dá)出來,但對(duì)一般的微分方程是無法求解的,如對(duì)一般的二元函數(shù)),(yxf,我們無法求出一階微分方程),(yxfy??(1)的解,但是對(duì)某些特殊類型的方程,我們可設(shè)法轉(zhuǎn)化為已解決的問題第二章
2024-12-08 09:04
【總結(jié)】西南科技大學(xué)理學(xué)院1第五講全微分方程與積分因子三、積分因子法一、全微分方程與原函數(shù)二、全微分方程判定定理與不定積分法四、小結(jié)西南科技大學(xué)理學(xué)院2定義:即(,)(,)(,)duxyMxydxNxydy??(
2024-10-16 21:13
【總結(jié)】常微分方程考試大綱教材:《常微分方程》,王高雄等編,高等教育出版社,1983年9月第2版總要求考生應(yīng)理解《常微分方程》中線性與非線性方程,通解、特解與奇解、基本解組與基解矩陣、奇點(diǎn)與零解的穩(wěn)定性等基本概念。掌握一階微分方程的解的存在、唯一性定理及方程(組)的一般理論。掌握微分方程(組)的解法。應(yīng)注意各部分知識(shí)結(jié)構(gòu)及知識(shí)間的內(nèi)在聯(lián)系,應(yīng)有抽象思維、邏輯推理、準(zhǔn)確運(yùn)算
2024-10-04 15:27