【總結(jié)】例“歡樂(lè)今宵”節(jié)目中,拿出兩個(gè)信箱.其中存放著先后兩次競(jìng)猜中成績(jī)優(yōu)秀的觀眾來(lái)信.甲信箱中有30封,乙信箱中有20封.現(xiàn)由主持人抽獎(jiǎng)確定幸運(yùn)觀眾,若先確定一名“幸運(yùn)之星”,然后再?gòu)膬尚畔渲懈鞔_定一名幸運(yùn)伙伴,有多少種不同的結(jié)果?練習(xí).如圖,一個(gè)地區(qū)分為5個(gè)行政區(qū)域,現(xiàn)給地圖著色,要求相鄰區(qū)域不得使用同一種
2024-11-09 06:20
【總結(jié)】排列組合常見(jiàn)題型及解題策略一.可重復(fù)的排列求冪法:重復(fù)排列問(wèn)題要區(qū)分兩類元素:一類可以重復(fù),另一類不能重復(fù),把不能重復(fù)的元素看作“客”,能重復(fù)的元素看作“店”,則通過(guò)“住店法”可順利解題,在這類問(wèn)題使用住店處理的策略中,關(guān)鍵是在正確判斷哪個(gè)底數(shù),哪個(gè)是指數(shù)【例1】(1)有4名學(xué)生報(bào)名參加數(shù)學(xué)、物理、化學(xué)競(jìng)賽,每人限報(bào)一科,有多少種不同的報(bào)名方法?(2)有4名學(xué)生參加爭(zhēng)奪數(shù)學(xué)、
2025-08-04 18:28
【總結(jié)】排列組合復(fù)習(xí)課教學(xué)設(shè)計(jì)------龍巖二中郭小峰排列組合復(fù)習(xí)課一.教學(xué)內(nèi)容分析:、組合都是研究事物在某種給定的模式下所有可能的配置的數(shù)目問(wèn)題,它們之間的主要區(qū)別在于是否要考慮選出元素的先后順序,不需要考慮順序的是組合問(wèn)題,需要考慮順序的是排列問(wèn)題,排列是在組合的基礎(chǔ)上對(duì)入選的元素進(jìn)行排隊(duì),因此,分析解決排列組合問(wèn)題的基本思維是“先組,后排”.,要注意四點(diǎn):(1)
2025-05-01 04:21
【總結(jié)】.公式P是指排列,從N個(gè)元素取R個(gè)進(jìn)行排列。公式C是指組合,從N個(gè)元素取R個(gè),不進(jìn)行排列。N-元素的總個(gè)數(shù)R參與選擇的元素個(gè)數(shù)!-階乘,如????9!=9*8*7*6*5*4*3*2*1從N倒數(shù)r個(gè),表達(dá)式應(yīng)該為n*(n-1)*(n-2)..(n-r+1);?????&
2025-07-26 05:35
【總結(jié)】排列組合綜合問(wèn)題教學(xué)目標(biāo)通過(guò)教學(xué),學(xué)生在進(jìn)一步加深對(duì)排列、組合意義理解的基礎(chǔ)上,掌握有關(guān)排列、組合綜合題的基本解法,提高分析問(wèn)題和解決問(wèn)題的能力,學(xué)會(huì)分類討論的思想.教學(xué)重點(diǎn)與難點(diǎn)重點(diǎn):排列、組合綜合題的解法.難點(diǎn):正確的分類、分步.教學(xué)用具投影儀.教學(xué)過(guò)程設(shè)計(jì)(一)引入師:現(xiàn)在我們大家已經(jīng)學(xué)習(xí)和掌握了一些排列問(wèn)題和組
2025-03-25 02:37
【總結(jié)】排列組合試題精選一、選擇題1、如圖,是中國(guó)西安世界園藝博覽會(huì)某區(qū)域的綠化美化示意圖,其中A、B、C、D是被劃分的四個(gè)區(qū)域,現(xiàn)有6種不同顏色的花,要求每個(gè)區(qū)域只能栽同一種花,允許同一顏色的花可以栽在不同的區(qū)域,但相鄰的區(qū)域不能栽同一色花,則不同的栽種方法共有(???)種。A.120?????
【總結(jié)】排列組合復(fù)習(xí)學(xué)案1重復(fù)排列“求冪運(yùn)算”重復(fù)排列問(wèn)題要區(qū)分兩類元素:一類可以重復(fù),另一類不能重復(fù)。把不能重復(fù)的元素看作“客”,能重復(fù)的元素看作“店”,則通過(guò)“住店法”可順利解題。例18名同學(xué)爭(zhēng)奪3項(xiàng)冠軍,獲得冠軍的可能性有()2.特殊元素(位置)用優(yōu)先法:把有限制條件的元素(位置)稱為特殊元素(位置),可優(yōu)先將它(們)安排好,后再安排其它元素。
2025-04-17 01:31
【總結(jié)】12除做到:排列組合分清,加乘原理辯明,避免重復(fù)遺漏外,還應(yīng)注意積累排列組合問(wèn)題得以快速準(zhǔn)確求解。直接法特殊元素法例1用1,2,3,4,5,6這6個(gè)數(shù)字組成無(wú)重復(fù)的四位數(shù),試求滿足下列條件的四位數(shù)各有多少個(gè)(1)數(shù)字1不排在個(gè)位和千位(2)數(shù)字1不在個(gè)位,數(shù)字6不在千位。分析:(1)個(gè)位和千位有5個(gè)數(shù)字可供選擇,其余2位有四個(gè)可供選擇,由乘法原理:=240
2025-03-25 02:36
【總結(jié)】例1:7種不同的花種在排成一列的花盆里,若兩種葵花不種在中間,也不種在兩端的花盆中,問(wèn)有多少不同的種法?例2:要排一個(gè)有5個(gè)獨(dú)唱節(jié)目和3個(gè)舞蹈節(jié)目的節(jié)目單,如果舞蹈節(jié)目不排頭,并且任何2個(gè)舞蹈節(jié)目不連排,則不同的排法有幾種?小結(jié):當(dāng)排列或組合問(wèn)題中,若某些元素或某些位置有特殊要求的時(shí)候,那么,一般先按排這些特殊元素或位置,然后再
2025-08-16 02:06
【總結(jié)】排列組合排列定義???從n個(gè)不同的元素中,取r個(gè)不重復(fù)的元素,按次序排列,稱為從n個(gè)中取r個(gè)的無(wú)重排列。排列的全體組成的集合用P(n,r)表示。排列的個(gè)數(shù)用P(n,r)表示。當(dāng)r=n時(shí)稱為全排列。一般不說(shuō)可重即無(wú)重。可重排列的相應(yīng)記號(hào)為P(n,r),P(n,r)。組合定義從n個(gè)不同元素中取r個(gè)不重復(fù)的元素組成一個(gè)子集,而不考慮其元素的順序,稱
2025-06-25 23:09
【總結(jié)】完美WORD格式專題三:排列、組合及二項(xiàng)式定理一、排列、組合與二項(xiàng)式定理【基礎(chǔ)知識(shí)】(加法原理).(乘法原理).==.(n,m∈N*,且m≤n).===(n,m∈N*,且m≤n).:(1)=;(2)+=(3).:.:
2025-06-25 22:56
【總結(jié)】主題課題:兩個(gè)原理和排列知識(shí)內(nèi)容:1、分類計(jì)數(shù)原理和分步計(jì)數(shù)原理2、排列、排列數(shù)概念3、排列數(shù)的計(jì)算公式4.排列應(yīng)用題能力目標(biāo):1、通過(guò)兩個(gè)原理的學(xué)習(xí),培養(yǎng)學(xué)生的解決實(shí)際問(wèn)題的能力;2、通過(guò)排列的學(xué)習(xí),可以遷移知識(shí),更好的運(yùn)用兩個(gè)原理,并能解決稍復(fù)雜的數(shù)學(xué)問(wèn)題。3、培養(yǎng)學(xué)生的分析問(wèn)題能力、解決問(wèn)題的能力。數(shù)學(xué)思想:轉(zhuǎn)化思想
【總結(jié)】編號(hào): 時(shí)間:2021年x月x日 海納百川 頁(yè)碼:第8頁(yè)共8頁(yè) 高中數(shù)學(xué)排列組合解答方法技巧_ 插板法就是在n個(gè)元素間的(n-1)個(gè)空中插入若干個(gè)(b)個(gè)板,可以把n個(gè)元素分成(...
2025-04-14 03:52
【總結(jié)】選校網(wǎng)專業(yè)大全歷年分?jǐn)?shù)線上萬(wàn)張大學(xué)圖片大學(xué)視頻院校庫(kù)排列組合問(wèn)題的解題策略關(guān)鍵詞:排列組合,解題策略一、相臨問(wèn)題——捆綁法例1.7名學(xué)生站成一排,甲、乙必須站在一起有多少不同排法?解:兩個(gè)元素排在一起的問(wèn)題可用“捆綁”法解決,先將甲乙二人看作一個(gè)元素與其他五人進(jìn)
2025-08-05 18:04
【總結(jié)】1北師大版高中數(shù)學(xué)2-3第一章《計(jì)數(shù)原理》法門高中姚連省制作2一、教學(xué)目標(biāo):(1)掌握排列組合一些常見(jiàn)的題型及解題方法,能夠運(yùn)用兩個(gè)原理及排列組合概念解決排列組合問(wèn)題;(2)提高合理選用知識(shí)解決問(wèn)題的能力.二、教學(xué)重點(diǎn)、難點(diǎn):排列、組合綜合問(wèn)題.三、教學(xué)方法:探析歸納,討論交流四、教學(xué)過(guò)程
2025-08-15 23:45