【總結】WORD格式可編輯排列組合方法篇1、兩個原理及區(qū)別(加法原理)(乘法原理)2、排列數公式排列數公式==.(,∈N*,且).注:規(guī)定.排列恒等式(1);(2).會推以下恒等式(1);(2);(3);(4)
2024-08-14 07:38
【總結】排列組合專題訓練1.(2014?四川)六個人從左至右排成一行,最左端只能排甲或乙,最右端不能排甲,則不同的排法共有( ?。.192種B.216種C.240種D.288種考點:排列、組合及簡單計數問題.菁優(yōu)網版權所有專題:應用題;排列組合.分析:分類討論,最左端排甲;最左端只排乙,最右端不能排甲,根據加法原理可得結論.
2024-08-14 07:27
【總結】排列,組合問題的解答策略第四節(jié)相鄰問題捆綁法?例13:6名同學排成一排,其中甲,乙兩人必須排在一起的不同排法有多少種??例14:從單詞“equation”中選取5個不同的字母排成一排,含有“qu”(其中“qu”的相連且順序不變)的不同排列共有多少個??例15:計劃在某畫廊展開10幅不同的畫,
2024-11-10 22:56
【總結】......計數問題教學目標、組合的意義;正確區(qū)分排列、組合問題;、排列數和組合數的意義,能根據具體的問題,寫出符合要求的排列或組合;;、分析與數字有關的計數問題,以及與其他專題的綜合運用,培養(yǎng)
2025-03-24 03:08
【總結】怎樣解排列組合問題在這幾次??贾?,發(fā)現(xiàn)同學們在學習排列組合中有許多問題?,F(xiàn)就排列組合給同學們講講幾種方法。首先,怎樣分析排列組合綜合題?1)使用“分類計數原理”還是“分步計數原理”要根據我們完成某事件時采取的方式而定,分類來完成這件事時用“分類計數原理”,分步來完成這件事時就用“分步計數原理”,怎樣確定分類,還是分步驟?“分類”表現(xiàn)為其中任何一類均可獨立完成所給的事件,而
2025-06-07 18:35
【總結】高二數學集體備課學案與教學設計章節(jié)標題選修2-3排列組合專題計劃學時1學案作者楊得生學案審核張愛敏高考目標掌握排列、組合問題的解題策略三維目標一、知識與技能。?;能運用解題策略解決簡單的綜合應用題。提高學生解決問題分析問題的能力??.二、過程與方法通過問題的探究,體會知識的類比遷移。以
2024-08-14 06:55
【總結】;能運用解題策略解決簡單的綜合應用題。提高學生解決問題分析問題的能力合問題.教學目標計數原理。完成一件事,有n類辦法,在第1類辦法中有m1種不同的方法,在第2類辦法中有m2種不同的方法,…,在第n類辦法中有mn種不同的方法,那么完成這件事共有:種不同的方法.
2024-11-09 13:22
【總結】例1:7種不同的花種在排成一列的花盆里,若兩種葵花不種在中間,也不種在兩端的花盆中,問有多少不同的種法?例2:要排一個有5個獨唱節(jié)目和3個舞蹈節(jié)目的節(jié)目單,如果舞蹈節(jié)目不排頭,并且任何2個舞蹈節(jié)目不連排,則不同的排法有幾種?小結:當排列或組合問題中,若某些元素或某些位置有特殊要求的時候,那么,一般先按排這些特殊元素或位置,然后再
2024-08-14 19:14
【總結】榆林教學資源網排列組合問題的20種解法排列組合問題聯(lián)系實際生動有趣,但題型多樣,思路靈活,因此解決排列組合問題,首先要認真審題,弄清楚是排列問題、組合問題還是排列與組合綜合問題;其次要抓住問題的本質特征,采用合理恰當的方法來處理。(加法原理)完成一件事,有類辦法,在第1類辦法中有種不
2025-03-25 02:37
【總結】......“排列、組合”??紗栴}[題型分析·高考展望] 該部分是高考數學中相對獨特的一個知識板塊,知識點并不多,但解決問題的方法十分靈活,主要內容是分類加法計數原理和分步乘法計數原理、排列與組合、二項式定理等,
2025-03-26 00:39
【總結】排列組合應用題數學教研組盛建芳復習回顧??!!!!mmnnPnCmmnm???1、排列??????????121121!mnnnPnnnnmPnnnn??????????????
2024-08-24 23:43
【總結】1、基本概念和考點2、合理分類和準確分步3、特殊元素和特殊位置問題4、相鄰相間問題5、定序問題6、分房問題7、環(huán)排、多排問題12、小集團問題10、先選后排問題9、平均分組問題11、構造模型策略8、實驗法(枚舉法)13、其它特殊方法排列組合應用題解法綜述(目錄)名稱內容
2024-08-25 01:49
【總結】問題1把abcd平均分成兩組有_____多少種分法?結論:平均分成的組,不管它們的順序如何,都是一種情況,所以分組后要除以,即m!,其中m表示組數。abcdacbdadbccdbdbcadacab這兩個在分組時只能算一個mmA均分不安排工作的問題例1:12本不
2024-08-14 07:24
【總結】排列組合之定序問題?教學目標:掌握定序問題的解決方法?教學重點:掌握倍縮法、空位法和逐個插空法?教學難點:能夠將具體問題轉化為定序問題問題總述對若干個元素進行排列時要求某幾個元素順序一定的排列問題,這類問題比較抽象解決方法技巧性很強,特別是一些具體問題要求能夠轉化為定序問題例題講解
2024-08-14 07:17
【總結】.公式P是指排列,從N個元素取R個進行排列。公式C是指組合,從N個元素取R個,不進行排列。N-元素的總個數R參與選擇的元素個數!-階乘,如????9?。?*8*7*6*5*4*3*2*1從N倒數r個,表達式應該為n*(n-1)*(n-2)..(n-r+1);?????&
2024-08-04 05:35