【總結(jié)】.公式P是指排列,從N個元素取R個進行排列。公式C是指組合,從N個元素取R個,不進行排列。N-元素的總個數(shù)R參與選擇的元素個數(shù)!-階乘,如????9?。?*8*7*6*5*4*3*2*1從N倒數(shù)r個,表達式應(yīng)該為n*(n-1)*(n-2)..(n-r+1);?????&
2025-07-26 05:35
【總結(jié)】排列組合綜合問題教學(xué)目標(biāo)通過教學(xué),學(xué)生在進一步加深對排列、組合意義理解的基礎(chǔ)上,掌握有關(guān)排列、組合綜合題的基本解法,提高分析問題和解決問題的能力,學(xué)會分類討論的思想.教學(xué)重點與難點重點:排列、組合綜合題的解法.難點:正確的分類、分步.教學(xué)用具投影儀.教學(xué)過程設(shè)計(一)引入師:現(xiàn)在我們大家已經(jīng)學(xué)習(xí)和掌握了一些排列問題和組
2025-03-25 02:37
【總結(jié)】排列組合試題精選一、選擇題1、如圖,是中國西安世界園藝博覽會某區(qū)域的綠化美化示意圖,其中A、B、C、D是被劃分的四個區(qū)域,現(xiàn)有6種不同顏色的花,要求每個區(qū)域只能栽同一種花,允許同一顏色的花可以栽在不同的區(qū)域,但相鄰的區(qū)域不能栽同一色花,則不同的栽種方法共有(???)種。A.120?????
【總結(jié)】排列組合常見題型及解題策略一.可重復(fù)的排列求冪法:重復(fù)排列問題要區(qū)分兩類元素:一類可以重復(fù),另一類不能重復(fù),把不能重復(fù)的元素看作“客”,能重復(fù)的元素看作“店”,則通過“住店法”可順利解題,在這類問題使用住店處理的策略中,關(guān)鍵是在正確判斷哪個底數(shù),哪個是指數(shù)【例1】(1)有4名學(xué)生報名參加數(shù)學(xué)、物理、化學(xué)競賽,每人限報一科,有多少種不同的報名方法?(2)有4名學(xué)生參加爭奪數(shù)學(xué)、
2025-08-04 18:28
【總結(jié)】例“歡樂今宵”節(jié)目中,拿出兩個信箱.其中存放著先后兩次競猜中成績優(yōu)秀的觀眾來信.甲信箱中有30封,乙信箱中有20封.現(xiàn)由主持人抽獎確定幸運觀眾,若先確定一名“幸運之星”,然后再從兩信箱中各確定一名幸運伙伴,有多少種不同的結(jié)果?練習(xí).如圖,一個地區(qū)分為5個行政區(qū)域,現(xiàn)給地圖著色,要求相鄰區(qū)域不得使用同一種
2024-11-09 06:20
【總結(jié)】12除做到:排列組合分清,加乘原理辯明,避免重復(fù)遺漏外,還應(yīng)注意積累排列組合問題得以快速準(zhǔn)確求解。直接法特殊元素法例1用1,2,3,4,5,6這6個數(shù)字組成無重復(fù)的四位數(shù),試求滿足下列條件的四位數(shù)各有多少個(1)數(shù)字1不排在個位和千位(2)數(shù)字1不在個位,數(shù)字6不在千位。分析:(1)個位和千位有5個數(shù)字可供選擇,其余2位有四個可供選擇,由乘法原理:=240
2025-03-25 02:36
【總結(jié)】 排列組合專題復(fù)習(xí)及經(jīng)典例題詳解1.學(xué)習(xí)目標(biāo)掌握排列、組合問題的解題策略(1)特殊元素優(yōu)先安排的策略:(2)合理分類與準(zhǔn)確分步的策略;(3)排列、組合混合問題先選后排的策略;(4)正難則反、等價轉(zhuǎn)化的策略;(5)相鄰問題捆綁處理的策略;(6)不相鄰問題插空處理的策略.綜合運用解題策略解決問題.:(1)知識梳理1.分類計數(shù)原理(加法原理
2025-04-17 01:31
【總結(jié)】排列組合排列定義???從n個不同的元素中,取r個不重復(fù)的元素,按次序排列,稱為從n個中取r個的無重排列。排列的全體組成的集合用P(n,r)表示。排列的個數(shù)用P(n,r)表示。當(dāng)r=n時稱為全排列。一般不說可重即無重??芍嘏帕械南鄳?yīng)記號為P(n,r),P(n,r)。組合定義從n個不同元素中取r個不重復(fù)的元素組成一個子集,而不考慮其元素的順序,稱
2025-06-25 23:09
【總結(jié)】完美WORD格式專題三:排列、組合及二項式定理一、排列、組合與二項式定理【基礎(chǔ)知識】(加法原理).(乘法原理).==.(n,m∈N*,且m≤n).===(n,m∈N*,且m≤n).:(1)=;(2)+=(3).:.:
2025-06-25 22:56
【總結(jié)】主題課題:兩個原理和排列知識內(nèi)容:1、分類計數(shù)原理和分步計數(shù)原理2、排列、排列數(shù)概念3、排列數(shù)的計算公式4.排列應(yīng)用題能力目標(biāo):1、通過兩個原理的學(xué)習(xí),培養(yǎng)學(xué)生的解決實際問題的能力;2、通過排列的學(xué)習(xí),可以遷移知識,更好的運用兩個原理,并能解決稍復(fù)雜的數(shù)學(xué)問題。3、培養(yǎng)學(xué)生的分析問題能力、解決問題的能力。數(shù)學(xué)思想:轉(zhuǎn)化思想
【總結(jié)】§10.2排列與組合基礎(chǔ)知識自主學(xué)習(xí)要點梳理1.排列(1)排列的定義:從n個元素中取出m(m≤n)個元素,按照一定的排成一列,叫做從n個不同元素中取出m個元素的一個排列.(2)排列數(shù)的定義:從n個不同元素中取出m(m≤n)個元素的
2025-08-05 18:19
【總結(jié)】排列組合測試卷1.7個人站一隊,其中甲在排頭,乙不在排尾,則不同的排列方法有()A.720 B.600 C.576 D.3242.某學(xué)校推薦甲、乙、丙、丁4名同學(xué)參加A、B、C三所大學(xué)的自主招生考試。每名同學(xué)只推薦一所大學(xué),()3.6個人分乘兩輛不
2025-08-05 07:38
【總結(jié)】第一篇:排列組合典型例題 典型例題一 例1用0到9這10個數(shù)字.可組成多少個沒有重復(fù)數(shù)字的四位偶數(shù)? 分析:這一問題的限制條件是:①沒有重復(fù)數(shù)字;②數(shù)字“0”不能排在千位數(shù)上;③個位數(shù)字只能是0...
2025-10-12 11:00
【總結(jié)】排列組合教材分析四色問題?任意一張地圖,用一種顏色對一個地區(qū)著色,那么一共只需要四種顏色就能保證每兩個相鄰的地區(qū)顏色不同。穩(wěn)定的婚姻問題?如果一個村子里每一個女孩都恰好認(rèn)識k個男孩,并且每一個男孩也恰好認(rèn)識k個女孩,那么每一個女孩都可以嫁給她認(rèn)識的一個男孩,并且每一個男孩都可以娶一個他認(rèn)識的女孩.穩(wěn)定的婚姻問題?但是
2025-08-15 22:11
【總結(jié)】從n個不同元素中,任取m個元素,按照一定的順序排成一列,叫做從n個不同元素中取出m個元素的一個排列.:從n個不同元素中,任取m個元素,并成一組,叫做從n個不同元素中取出m個元素的一個組合.:::)!(!)1()2)(1(mnnmnnnnAmn????????排列與組合
2025-03-05 11:20