【總結(jié)】直線與圓錐曲線綜合問題一.考點(diǎn)分析。⑴直線與圓錐曲線的位置關(guān)系和判定直線與圓錐曲線的位置關(guān)系有三種情況:相交、相切、相離.直線方程是二元一次方程,圓錐曲線方程是二元二次方程,由它們組成的方程組,經(jīng)過消元得到一個(gè)一元二次方程,直線和圓錐曲線相交、相切、相離的充分必要條件分別是0??、0??、0??.⑵直線與圓錐曲線相交所得的弦長
2025-01-09 16:02
【總結(jié)】麻城市第一中學(xué)圓錐曲線中的定點(diǎn)問題麻城一中王輝麻城市第一中學(xué)1.解析幾何中,定點(diǎn)問題是高考命題的一個(gè)熱點(diǎn),也是一個(gè)難點(diǎn),因?yàn)槎c(diǎn)必然是在變化中所表現(xiàn)出來的不變量,所以可運(yùn)用函數(shù)的思想方法,結(jié)合等式的恒成立求解,也就是說要與題中的可變量無關(guān)。2.求定點(diǎn)常用方法有兩種:①特殊到一般法,根據(jù)動(dòng)點(diǎn)、
2025-08-05 04:47
【總結(jié)】解析幾何中的參數(shù)取值范圍問題例1:選題意圖:利用三角形中的公理構(gòu)建不等式xy設(shè)分別是橢圓的左、右焦點(diǎn),若在直線上存在點(diǎn)P,使線段的中垂線過點(diǎn),求橢圓離心率的取值范圍.解法一:設(shè)P,F(xiàn)1P的中點(diǎn)Q的坐標(biāo)為,則kF1P=,kQF2=.由kF1P·kQF2=-1,得y2=.因?yàn)閥2≥0,但注意b2+2c2≠0,所以2c2-b2>0,
2025-03-25 00:03
【總結(jié)】第九章 幾何問題的轉(zhuǎn)換解析幾何幾何問題的轉(zhuǎn)換一、基礎(chǔ)知識(shí):在圓錐曲線問題中,經(jīng)常會(huì)遇到幾何條件與代數(shù)條件的相互轉(zhuǎn)化,合理的進(jìn)行幾何條件的轉(zhuǎn)化往往可以起到“四兩撥千斤”的作用,極大的簡化運(yùn)算的復(fù)雜程度,在本節(jié)中,將列舉常見的一些幾何條件的轉(zhuǎn)化。1、在幾何問題的轉(zhuǎn)化
【總結(jié)】第五節(jié)圓錐曲線的綜合應(yīng)用1.圓錐曲線的統(tǒng)一定義:平面內(nèi)到__________________________________________________________________是圓錐曲線,當(dāng)________時(shí),軌跡是橢圓;當(dāng)________時(shí),軌跡是雙曲線;當(dāng)________時(shí),軌跡表示拋物線,定點(diǎn)F是圓錐曲線的一個(gè)________
2025-11-03 18:19
【總結(jié)】第64講圓錐曲線的綜合應(yīng)用,第一頁,編輯于星期五:十六點(diǎn)五十七分。,第二頁,編輯于星期五:十六點(diǎn)五十七分。,第三頁,編輯于星期五:十六點(diǎn)五十七分。,第四頁,編輯于星期五:十六點(diǎn)五十七分。,第五頁,編輯...
2025-10-15 06:27
【總結(jié)】......關(guān)于圓錐曲線的中點(diǎn)弦問題直線與圓錐曲線相交所得弦中點(diǎn)問題,是解析幾何中的重要內(nèi)容之一,也是高考的一個(gè)熱點(diǎn)問題。這類問題一般有以下三種類型:(1)求中點(diǎn)弦所在直線方程問題;(2)求弦中點(diǎn)的軌跡方程問題;
2025-03-25 00:02
【總結(jié)】第九章 圓錐曲線的離心率問題解析幾何圓錐曲線的離心率問題離心率是圓錐曲線的一個(gè)重要幾何性質(zhì),一方面刻畫了橢圓,雙曲線的形狀,另一方面也體現(xiàn)了參數(shù)之間的聯(lián)系。一、基礎(chǔ)知識(shí):1、離心率公式:(其中為圓錐曲線的半焦距)(1)橢圓:(2)雙曲線:2、圓錐曲線中的幾
2025-03-25 00:04
【總結(jié)】圓錐曲線過定點(diǎn)問題一、小題自測1.無論取任何實(shí)數(shù),直線必經(jīng)過一個(gè)定點(diǎn),則這個(gè)定點(diǎn)的坐標(biāo)為.2.已知直線;圓,則直線與圓的位置關(guān)系為.二、幾個(gè)常見結(jié)論:滿足一定條件的曲線上兩點(diǎn)連結(jié)所得的直線過定點(diǎn)或滿足一定條件的曲線過定點(diǎn),這構(gòu)成了過定點(diǎn)問題。1、過定點(diǎn)模型:是圓錐曲線上的兩動(dòng)點(diǎn),是一定點(diǎn),其
【總結(jié)】第九章 圓錐曲線中的存在性問題解析幾何圓錐曲線中的存在性問題一、基礎(chǔ)知識(shí)1、在處理圓錐曲線中的存在性問題時(shí),通常先假定所求的要素(點(diǎn),線,圖形或是參數(shù))存在,并用代數(shù)形式進(jìn)行表示。再結(jié)合題目條件進(jìn)行分析,若能求出相應(yīng)的要素,則假設(shè)成立;否則即判定不存在2、存在性問題常見要素的代數(shù)形式:
【總結(jié)】圓錐曲線復(fù)習(xí)課橢圓雙曲線拋物線幾何條件與兩個(gè)定點(diǎn)的距離的和等于常數(shù)與兩個(gè)定點(diǎn)的距離的差的絕對(duì)值等于常數(shù)與一個(gè)定點(diǎn)和一條定直線的距離相等標(biāo)準(zhǔn)方程圖形頂點(diǎn)坐標(biāo)(±a,0),(0,±b)(±a,0)(0,0))0(12
2025-07-25 03:46
【總結(jié)】山東省嘉祥縣第四中學(xué)曾慶坤一、復(fù)習(xí)圓錐曲線的定義1、橢圓的第一定義與第二定義2、雙曲線的第一定義與第二定義3、拋物線的定義二、經(jīng)典回顧1、已知?jiǎng)訄AM和圓內(nèi)切,并和圓外切,動(dòng)圓圓心M的軌跡方程為
2025-10-28 14:25
【總結(jié)】專題:解圓錐曲線問題常用方法(一)【學(xué)習(xí)要點(diǎn)】解圓錐曲線問題常用以下方法:1、定義法(1)橢圓有兩種定義。第一定義中,r1+r2=2a。第二定義中,r1=ed1r2=ed2。(2)雙曲線有兩種定義。第一定義中,,當(dāng)r1r2時(shí),注意r2的最小值為c-a:第二定義中,r1=ed1,r2=ed2,尤其應(yīng)注意第二定義的應(yīng)用,常常將半徑與“
2025-08-05 03:29
【總結(jié)】2022年01月圓的推廣飛船軌道為什么斜著切割一個(gè)圓柱得到的截線是一個(gè)橢圓呢?有關(guān)圓的某些定理在圓錐曲線中的推廣是什么樣的?圓錐曲線在大自然的基本結(jié)構(gòu)中扮演著怎樣的角色?斜切圓柱“數(shù)學(xué)是人類文化的重要組成部分……應(yīng)適當(dāng)反映數(shù)學(xué)的歷史、應(yīng)用和發(fā)展趨勢(shì),數(shù)學(xué)
2025-01-19 01:18
【總結(jié)】Q群675260005專供圓錐曲線中的存在、探索性問題一、考情分析圓錐曲線中的存在性問題、探索問題是高考常考題型之一,它是在題設(shè)條件下探索某個(gè)數(shù)學(xué)對(duì)象(點(diǎn)、線、數(shù)等),解法不一,我們?cè)谄綍r(shí)的教學(xué)中對(duì)這類題目訓(xùn)練較少,因而學(xué)生遇到這類題目時(shí),往往感到無從下手,本文針對(duì)圓錐曲線中這類問題進(jìn)行了探討.二、經(jīng)驗(yàn)分享解決探索性問題的注意事項(xiàng)探索性問題,先假設(shè)存在,推證滿足
2025-07-25 00:14