【總結】解析幾何中的參數(shù)取值范圍問題例1:選題意圖:利用三角形中的公理構建不等式xy設分別是橢圓的左、右焦點,若在直線上存在點P,使線段的中垂線過點,求橢圓離心率的取值范圍.解法一:設P,F(xiàn)1P的中點Q的坐標為,則kF1P=,kQF2=.由kF1P·kQF2=-1,得y2=.因為y2≥0,但注意b2+2c2≠0,所以2c2-b2>0,
2025-03-25 00:03
【總結】第九章 幾何問題的轉換解析幾何幾何問題的轉換一、基礎知識:在圓錐曲線問題中,經(jīng)常會遇到幾何條件與代數(shù)條件的相互轉化,合理的進行幾何條件的轉化往往可以起到“四兩撥千斤”的作用,極大的簡化運算的復雜程度,在本節(jié)中,將列舉常見的一些幾何條件的轉化。1、在幾何問題的轉化
【總結】......圓錐曲線32題1.如圖所示,,分別為橢圓:()的左、右兩個焦點,,為兩個頂點,已知橢圓上的點到,兩點的距離之和為. (1)求橢圓的方程;(2)過橢圓的焦點作的平行線交
2025-03-24 04:35
【總結】圓錐曲線焦點弦長公式(極坐標參數(shù)方程)圓錐曲線的焦點弦問題是高考命題的大熱點,主要是在解答題中,全國文科一般為壓軸題的第22題,理科和各省市一般為第21題或者第20題,幾乎每一年都有考察。由于題目的綜合性很高的,運算量很大,屬于高難度題目,考試的得分率極低。本文介紹的焦點弦長公式是圓錐曲線(橢圓、雙曲線和拋物線)的通用公式,它是解決這類問題的金鑰匙,利用這個公式使得極其復雜的問題變得
2025-08-05 05:10
【總結】WORD資料可編輯圓錐曲線自編講義之基本量要求熟悉圓錐曲線的a、b、c、e、p、漸近線方程、準線方程、焦點坐標等數(shù)據(jù)的幾何意義和相互關系。(2011安徽理2)雙曲線的實軸長是 (A)2 (B)2 (C)4 (D)4【答案】C
2025-04-17 00:20
【總結】麻城市第一中學圓錐曲線中的定點問題麻城一中王輝麻城市第一中學1.解析幾何中,定點問題是高考命題的一個熱點,也是一個難點,因為定點必然是在變化中所表現(xiàn)出來的不變量,所以可運用函數(shù)的思想方法,結合等式的恒成立求解,也就是說要與題中的可變量無關。2.求定點常用方法有兩種:①特殊到一般法,根據(jù)動點、
2025-08-05 04:47
【總結】圓錐曲線有關焦點弦的幾個公式及應用如果圓錐曲線的一條弦所在的直線經(jīng)過焦點,則稱此弦為焦點弦。圓錐曲線的焦點弦問題涉及到離心率、直線斜率(或傾斜角)、定比分點(向量)、焦半徑和焦點弦長等有關知識。焦點弦是圓錐曲線的“動脈神經(jīng)”,集數(shù)學知識、思想方法和解題策略于一體,倍受命題人青睞,在近幾年的高考中頻頻亮相,題型多為小題且位置靠后屬客觀題中的壓軸題,也有作為大題進行考查的。本文介紹圓錐曲
2025-07-25 00:15
【總結】圓錐曲線專題——定點、定值問題定點問題是常見的出題形式,化解這類問題的關鍵就是引進變的參數(shù)表示直線方程、數(shù)量積、比例關系等,根據(jù)等式的恒成立、數(shù)式變換等尋找不受參數(shù)影響的量。直線過定點問題通法,是設出直線方程,通過韋達定理和已知條件找出k和m的一次函數(shù)關系式,代入直線方程即可。技巧在于:設哪一條直線?如何轉化題目條件?圓錐曲線是一種很有趣的載體,自身存在很多性質,這些性質往往成為出題老師
【總結】專題:解圓錐曲線問題常用方法(一)【學習要點】解圓錐曲線問題常用以下方法:1、定義法(1)橢圓有兩種定義。第一定義中,r1+r2=2a。第二定義中,r1=ed1r2=ed2。(2)雙曲線有兩種定義。第一定義中,,當r1r2時,注意r2的最小值為c-a:第二定義中,r1=ed1,r2=ed2,尤其應注意第二定義的應用,常常將半徑與“
2025-08-05 03:29
【總結】解圓錐曲線問題常用方法(二)【學習要點】解圓錐曲線問題常用以下方法:4、數(shù)形結合法解析幾何是代數(shù)與幾何的一種統(tǒng)一,常要將代數(shù)的運算推理與幾何的論證說明結合起來考慮問題,在解題時要充分利用代數(shù)運算的嚴密性與幾何論證的直觀性,尤其是將某些代數(shù)式子利用其結構特征,想象為某些圖形的幾何意義而構圖,用圖形的性質來說明代數(shù)性質。如“2x+y”,令2x+y=b,
2025-06-07 22:10
【總結】Q群675260005專供圓錐曲線中的存在、探索性問題一、考情分析圓錐曲線中的存在性問題、探索問題是高考??碱}型之一,它是在題設條件下探索某個數(shù)學對象(點、線、數(shù)等),解法不一,我們在平時的教學中對這類題目訓練較少,因而學生遇到這類題目時,往往感到無從下手,本文針對圓錐曲線中這類問題進行了探討.二、經(jīng)驗分享解決探索性問題的注意事項探索性問題,先假設存在,推證滿足
2025-07-25 00:14
【總結】圓錐曲線的最值、范圍問題與圓錐曲線有關的范圍、最值問題,各種題型都有,既有對圓錐曲線的性質、曲線與方程關系的研究,又對最值范圍問題有所青睞,它能綜合應用函數(shù)、三角、不等式等有關知識,緊緊抓住圓錐曲線的定義進行轉化,充分展現(xiàn)數(shù)形結合、函數(shù)與方程、化歸轉化等數(shù)學思想在解題中的應用,本文從下面幾個方面闡述該類題型的求解方法,以引起讀者注意.一、利用圓錐曲線定義求最值借助圓錐曲線定義將
2025-03-25 00:04
【總結】橢圓中的相關問題一、橢圓中的最值問題:,內有一點,為橢圓上任意一點,若要求最小,則這最小值是()A.B.C.D.,,為橢圓上任意一點,若要求最小,則這最小值是()A.B.C.D.3.橢圓上任一點橢圓到兩焦點橢圓,的距離之積的最大值是,最小值是。4.設,則的
2025-07-21 11:38
【總結】第十章圓錐曲線★知識網(wǎng)絡★橢圓雙曲線拋物線定義定義定義標準方程標準方程幾何性質幾何性質應用應用標準方程幾何性質應用圓錐曲線直線與圓錐曲線位置關系相交相切相離圓錐曲線的弦第1講橢圓★知識梳理★1.橢圓定義:(1)第一定義:平面內與兩個定點的距離之和為常數(shù)的動點的軌跡叫橢圓,
2025-08-04 09:58
【總結】第九節(jié)圓錐曲線的綜合問題(理)抓基礎明考向提能力教你一招我來演練第八章平面解析幾何返回返回[備考方向要明了]考什么、拋物線的位置關系的思想方法.、定值、參數(shù)范圍等問題.