【總結(jié)】常微分方程考試大綱教材:《常微分方程》,王高雄等編,高等教育出版社,1983年9月第2版總要求考生應(yīng)理解《常微分方程》中線性與非線性方程,通解、特解與奇解、基本解組與基解矩陣、奇點(diǎn)與零解的穩(wěn)定性等基本概念。掌握一階微分方程的解的存在、唯一性定理及方程(組)的一般理論。掌握微分方程(組)的解法。應(yīng)注意各部分知識(shí)結(jié)構(gòu)及知識(shí)間的內(nèi)在聯(lián)系,應(yīng)有抽象思維、邏輯推理、準(zhǔn)確運(yùn)算
2025-09-25 15:27
【總結(jié)】數(shù)學(xué)實(shí)驗(yàn)報(bào)告1.題目:某容器盛滿水后,底端直徑為d0的小孔開啟(如圖1),根據(jù)水力學(xué)知識(shí),當(dāng)水面高度為h時(shí),誰(shuí)從小孔中流出的速度為v=*(g*h)^(其中g(shù)為重力加速度,)1)若容器為倒圓錐形(如圖1),,小孔直徑d為3cm,為水從小孔中流完需要多少時(shí)間;2min時(shí)水面高度是多少。2)若容器為倒葫蘆形(如圖2),,小孔直徑d為3cm,由底端(記x=0)(
2025-01-16 17:00
【總結(jié)】第九章常微分方程數(shù)值解法許多實(shí)際問題的數(shù)學(xué)模型是微分方程或微分方程的定解問題。如物體運(yùn)動(dòng)、電路振蕩、化學(xué)反映及生物群體的變化等。常微分方程可分為線性、非線性、高階方程與方程組等類;線性方程包含于非線性類中,高階方程可化為一階方程組。若方程組中的所有未知量視作一個(gè)向量,則方程組可寫成向量形式的單個(gè)方程。因此研究一階微分方程的初值問題
2025-08-23 01:54
【總結(jié)】第二節(jié)可分離變量的微分方程dxxfdyyg)()(?可分離變量的微分方程.5422yxdxdy?例如,2254dxxdyy???解法???dxxfdyyg)()(設(shè))(yG和)(xF分別為)(yg和)(xf的原函數(shù),則CxFyG??)()(為微分方程的通解.例1.求微分
2025-08-01 16:24
【總結(jié)】第九章常微分方程的數(shù)值解法§1、引言§2、初值問題的數(shù)值解法單步法§3、龍格-庫(kù)塔方法§4、收斂性與穩(wěn)定性§5、初值問題的數(shù)值解法―多步法§6、方程組和剛性方程§7、習(xí)題和總結(jié)主要內(nèi)容主
2025-08-04 15:59
【總結(jié)】第5章微分方程一、內(nèi)容精要(一)主要定義微分方程中出現(xiàn)的未知函數(shù)導(dǎo)數(shù)的最高階數(shù)叫做微分方程的階,本光盤只限討論常微分方程.含有自變量、未知函數(shù)以及未知函數(shù)的導(dǎo)數(shù)或微分的方程叫做微分方程;未知
2025-01-19 14:35
【總結(jié)】???
2025-06-21 23:02
【總結(jié)】第三章微分方程模型一、微分方程知識(shí)簡(jiǎn)介我們要掌握常微分方程的一些基礎(chǔ)知識(shí),對(duì)一些可以求解的微分方程及其方程組,要求掌握其解法,并了解一些方程的近似解法。微分方程的體系:(1)初等積分法(一階方程及幾類可降階為一階的方程)(2)一階線性微分方程組(常系數(shù)線性微分方程組的解法)(3)高階線性微分方程(高階線性常系數(shù)微分方程解法)。其中還包括了常微分方程的基本定理。
2025-06-24 22:55
【總結(jié)】第六章常微分方程—不定積分問題—微分方程問題推廣微分方程的基本概念一階微分方程二階微分方程用Matlab軟件解二階常系數(shù)非齊次微分方程微分方程的基本概念微分方程的基本概念引例幾何問題物理問題解:設(shè)所求曲線方程為y=y(x),則有如下關(guān)系式:
2025-04-29 01:07
【總結(jié)】畢業(yè)論文常微分方程中的變量代換法畢業(yè)設(shè)計(jì)(論文)原創(chuàng)性聲明和使用授權(quán)說明原創(chuàng)性聲明本人鄭重承諾:所呈交的畢業(yè)設(shè)計(jì)(論文),是我個(gè)人在指導(dǎo)教師的指導(dǎo)下進(jìn)行的研究工作及取得的成果。盡我所知,除文中特別加以標(biāo)注和致謝的地方外,不包含其他人或組織已經(jīng)
2025-08-19 15:34
【總結(jié)】常微分方程試題庫(kù)(一)、填空題(每空3分)1、當(dāng)_______________時(shí),方程0),(),(??dyyxNdxyxM稱為恰當(dāng)方程,或稱全微分方程,其原函數(shù)為:。2、形如________________的方程,稱為齊次方程。3、求),(yxfdxdy?滿足00)(
2025-01-10 04:05
【總結(jié)】4.給定一階微分方程,(1).求出它的通解;(2).求通過點(diǎn)的特解;(3).求出與直線相切的解;(4).求出滿足條件的解;(5).繪出(2),(3),(4)中的解得圖形。解:(1).通解顯然為;(2).把代入得,故通過點(diǎn)的特解為;(3).因?yàn)樗笾本€與直線相切,所以只有唯一解,即只有唯一實(shí)根,從而,故與直線相切的解是;(4).把代入即得
2025-06-24 15:00
【總結(jié)】第十二章常微分方程(A)一、是非題1.任意微分方程都有通解。(X)2.微分方程的通解中包含了它所有的解。(X)3.函數(shù)是微分方程的解。(O)4.函數(shù)是微分方程的解。(X)5.微分方程的通解是(為任意常數(shù))。(O)6.是一階線性微分方程。(X)7.不是一階線性微分方程。(O)8.的特征方程為
【總結(jié)】常微分方程習(xí)題及解答一、問答題:1.常微分方程和偏微分方程有什么區(qū)別?微分方程的通解是什么含義?答:微分方程就是聯(lián)系著自變量,未知函數(shù)及其導(dǎo)數(shù)的關(guān)系式。常微分方程,自變量的個(gè)數(shù)只有一個(gè)。偏微分方程,自變量的個(gè)數(shù)為兩個(gè)或兩個(gè)以上。常微分方程解的表達(dá)式中,可能包含一個(gè)或幾個(gè)任意常數(shù),若其所包含的獨(dú)立的任意常數(shù)的個(gè)數(shù)恰好與該方程的階數(shù)相同,這樣的解為該微分方程的通解。2.舉例闡述常
2025-03-25 01:12
【總結(jié)】常微分方程的基本概念可分離變量的微分方程一階微分方程與可降階的高階微分方程二階常系數(shù)微分方程常微分方程的應(yīng)用舉例第9章常微分方程結(jié)束前頁(yè)結(jié)束后頁(yè)含有未知函數(shù)的導(dǎo)數(shù)(或微分)的方程稱為微分方程。定義一常微分方程的基
2025-01-19 07:39