freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

八年級數(shù)學(xué)下學(xué)期期中試卷含解析新人教版(i)-資料下載頁

2025-06-07 15:56本頁面
  

【正文】 )2+()2=()2∴以、組成的三角形是直角三角形,又∵、均為正整數(shù),∴可取a=9,b=16,則=5,∴所組成三角形的面積為:34=6.【點評】本題主要考查二次根式的應(yīng)用及勾股定理逆定理,熟練掌握勾股定理逆定理并據(jù)此判斷出該三角形為直角三角形是關(guān)鍵. 25.已知兩數(shù)之積等于1,我們稱這兩個數(shù)互為倒數(shù),如:2=1,=1,( +)(﹣)=1,我們稱2與;與, +與﹣互為倒數(shù).若a+與a﹣互為倒數(shù),求+的倒數(shù).【分析】先利用倒數(shù)的定義得到a2﹣b=1,即b=a2﹣1,則=,利用二次根式有意義的條件得a=2,則b=3,所以+=4,然后利用倒數(shù)定義求解.【解答】解:∵a+與a﹣互為倒數(shù),∴(a+)(a﹣)=1,∴a2﹣b=1,即b=a2﹣1,∴==,∴﹣(a﹣2)2≤0∴a﹣2=0,解得a=2,∴b=a2﹣1=4﹣1=3,∴+=0+=4,所以+的倒數(shù)為.【點評】本題考查了二次根式的計算:先把各二次根式化為最簡二次根式,再進行二次根式的乘除運算,然后合并同類二次根式.利用二次根式有意義的條件確定a的值是解決問題的關(guān)鍵. 26.在?ABCD中,∠BAD的平分線交直線BC于點E,交直線DC于點F.(1)在圖1中證明CE=CF;(2)若∠ABC=120176。,F(xiàn)G∥CE,F(xiàn)G=CE,分別連結(jié)DB、DG(如圖2),求∠BDG的度數(shù).【分析】(1)由平行四邊形的性質(zhì)得出AD∥BC,AB∥CD.證出∠DAF=∠CEF,∠BAF=∠F,得出∠CEF=∠F,即可得出結(jié)論;(2)證出四邊形CEGF是菱形,得出EG=EC,∠GCF=∠GCE=∠ECF=60176。.得出△ECG是等邊三角形.得出EG=CG,∠GEC=∠EGC=60176。,得出∠GEC=∠GCF,因此∠BEG=∠DCG,證出AB=BE.BE=DC,由SAS證明△BEG≌△DCG.得出BG=DG,∠1=∠2,求出∠BGD,即可得出結(jié)果.【解答】(1)證明:∵AF平分∠BAD,∴∠BAF=∠DAF,∵四邊形ABCD是平行四邊形,∴AD∥BC,AB∥CD.∴∠DAF=∠CEF,∠BAF=∠F,∴∠CEF=∠F,∴CE=CF.(2)解:分別連接GB、GE、GC,如圖2所示.∵AB∥DC,∠ABC=120176。,∴∠ECF=∠ABC=120176。,∵FG∥CE且FG=CE,∴四邊形CEGF是平行四邊形.由(1)得CE=CF,∴四邊形CEGF是菱形,∴EG=EC,∠GCF=∠GCE=∠ECF=60176。.∴△ECG是等邊三角形.∴EG=CG,∠GEC=∠EGC=60176。,∴∠GEC=∠GCF,∴∠BEG=∠DCG,由AD∥BC及AF平分∠BAD可得∠BAE=∠AEB,∴AB=BE.在□ABCD中,AB=DC.∴BE=DC,在△BEG和△DCG中,∴△BEG≌△DCG(SAS).∴BG=DG,∠BGE=∠CGD,∴∠BGD=∠BGE+∠DGE=∠BGE+∠DGE=∠EGC=60176。.∴∠BDG==60176。.【點評】此題主要考查平行四邊形的判定與性質(zhì),等邊三角形的判定與性質(zhì),菱形的判定、全等三角形的判定與性質(zhì)、等腰三角形的判定等知識;熟練掌握平行四邊形的判定與性質(zhì),證明三角形全等是解決問題(2)的關(guān)鍵. 27.如圖,梯形OABC中,O為直角坐標(biāo)系的原點,A、B、C的坐標(biāo)分別為(14,0)、(14,3)、(4,3).點P、Q同時從原點出發(fā),分別作勻速運動,點P沿OA以每秒1個單位向終點A運動,點Q沿OC、CB以每秒2個單位向終點B運動.當(dāng)這兩點中有一點到達自己的終點時,另一點也停止運動.(1)設(shè)從出發(fā)起運動了x秒,且x>,Q點的坐標(biāo);(2)當(dāng)x等于多少時,四邊形OPQC為平行四邊形?【分析】(1)首先得出Q點運動的距離進而表示出Q點坐標(biāo)即可;(2)利用平行四邊形的性質(zhì)得出QC=OP,即可得出答案.【解答】解:先求出各個點到終點需要的時間:∵C(4,3),∴OC==5,∵B(14,3),∴BC=14﹣4=10,(1)由題意可知,當(dāng)x>,Q點在CB上運動,故橫坐標(biāo)為:2x﹣5+4=2x﹣1,縱坐標(biāo)為3,故Q點坐標(biāo)為:(2x﹣1,3);(2)∵C(4,3),B(14,3),∴CB∥OA,∴CQ∥OP,當(dāng)CQ=OP時,四邊形OPQC為平行四邊形,即2x﹣5=x,解得:x=5.【點評】此題考查了梯形的性質(zhì)、平行四邊形的判定與性質(zhì)等知識,注意掌握數(shù)形結(jié)合思想與方程思想的應(yīng)用.11
點擊復(fù)制文檔內(nèi)容
教學(xué)教案相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1