【總結(jié)】│定積分與微積分基本定理│知識梳理知識梳理│知識梳理│知識梳理│知識梳理│知識梳理│要點(diǎn)探究要點(diǎn)探究│要點(diǎn)探究│要點(diǎn)探究│要點(diǎn)探究│要點(diǎn)探究│要點(diǎn)探究│要點(diǎn)探究│要點(diǎn)探究│要點(diǎn)探究│要點(diǎn)探究│要點(diǎn)探究│要點(diǎn)探究
2025-07-20 05:01
【總結(jié)】微積分基本定理變速直線運(yùn)動(dòng)中位移函數(shù)與速度函數(shù)的聯(lián)系一方面,變速直線運(yùn)動(dòng)中位移為?21)(TTdttv設(shè)某物體作直線運(yùn)動(dòng),已知速度)(tvv?是時(shí)間間隔],[21TT上t的一個(gè)連續(xù)函數(shù),求物體在這段時(shí)間內(nèi)所經(jīng)過的位移.另一方面,這段位移可表示為)()(12TsTs?
2024-08-25 01:33
【總結(jié)】abxyo??A曲邊梯形由連續(xù)曲線實(shí)例1(求曲邊梯形的面積))(xfy?)0)((?xf、x軸與兩條直線ax?、bx?所圍成.第五節(jié)定積分一、問題的提出)(xfy?abxyoabxyo用矩形面積近似取代曲邊梯形面積顯然,小矩形越多,矩形總面
2025-07-22 11:11
【總結(jié)】定積分與微積分基本定理習(xí)題一、選擇題1.a(chǎn)=xdx,b=exdx,c=sinxdx,則a、b、c的大小關(guān)系是( )A.a(chǎn)cb B.a(chǎn)bcC.cba D.cab2.由曲線y=x2,y=x3圍成的封閉圖形面積為( )練習(xí)、設(shè)點(diǎn)P在曲線y=x2上從原點(diǎn)到A(2,4)移動(dòng),
2025-04-17 13:04
【總結(jié)】定積分與微積分基本定理 1.已知f(x)為偶函數(shù),且f(x)dx=8,則-6f(x)dx=( )A.0B.4C.8D.162.設(shè)f(x)=(其中e為自然對數(shù)的底數(shù)),則f(x)dx的值為( )A.B.2C.1D.3.若a=x2dx,b=x3dx,c=sinxdx,則a、b、c的大小關(guān)系是( )A.a(chǎn)
2025-08-05 05:47
【總結(jié)】第4講定積分的概念與微積分基本定理A級基礎(chǔ)演練(時(shí)間:30分鐘滿分:55分)1.(2021·大連模擬)已知f(x)為偶函數(shù)且??06f(x)dx=8,則??6-6f(x)dx等于().A.0B.4C.8D.16解析因?yàn)閒(x)為偶函數(shù),圖象關(guān)
2024-12-08 14:27
【總結(jié)】一、問題的提出二、積分上限函數(shù)及其導(dǎo)數(shù)三、牛頓-萊布尼茨公式四、小結(jié)思考題第三節(jié)微積分基本公式變速直線運(yùn)動(dòng)中位置函數(shù)與速度函數(shù)的聯(lián)系變速直線運(yùn)動(dòng)中路程為21()dTTvtt?設(shè)某物體作直線運(yùn)動(dòng),已知速度)(tvv?是時(shí)間間隔],[21TT上t的一個(gè)連續(xù)函數(shù),且0)(?tv
2024-08-20 08:39
【總結(jié)】《微積分基本定理》教案[來源:中國%@^教*育~出版網(wǎng)]一、教學(xué)目標(biāo)[中@*國&教^育出版#網(wǎng)]通過實(shí)例,直觀了解微積分基本定理的含義,會用牛頓-萊布尼茲公式求簡單的定積分二、教學(xué)重難點(diǎn)重點(diǎn)通過探究變速直線運(yùn)動(dòng)物體的速度與位移的關(guān)系,使學(xué)生直觀了解微積分基本定理的含義,并能正確運(yùn)用基本定理計(jì)算簡單的
2024-12-07 21:43
【總結(jié)】一、問題的提出二、定積分的定義三、存在定理四、幾何意義五、小結(jié)思考題第一節(jié)定積分的概念abxyo??A曲邊梯形由連續(xù)曲線實(shí)例1(求曲邊梯形的面積))(xfy?)0)((?xf、x軸與兩條直線ax?、bx?所圍成.一、問題的提出)(xfy?ab
2024-08-30 12:42
【總結(jié)】如果函數(shù))(xf在閉區(qū)間],[ba上連續(xù),證Mdxxfabmba?????)(1)()()(abMdxxfabmba??????由閉區(qū)間上連續(xù)函數(shù)的介值定理知?jiǎng)t在積分區(qū)間],[ba上至少存在一個(gè)點(diǎn)?,使dxxfba?)())((abf???.)(ba???定理1(定積分中值定理)積分
2025-05-12 23:44
【總結(jié)】微積分公式與定積分計(jì)算練習(xí)(附加三角函數(shù)公式)一、基本導(dǎo)數(shù)公式⑴⑵⑶⑷⑸⑹⑺⑻⑼⑽⑾⑿⒀⒁⒂⒃⒄⒅二、導(dǎo)數(shù)的四則運(yùn)算法則三、高階導(dǎo)數(shù)的運(yùn)算法則(1)
2025-03-25 01:57
【總結(jié)】一、分部積分公式二、小結(jié)思考題第五節(jié)定積分的分部積分法設(shè)函數(shù))(xu、)(xv在區(qū)間??ba,上具有連續(xù)導(dǎo)數(shù),則有??ddbbbaaauvuvvu????.定積分的分部積分公式推導(dǎo)??,vuvuuv???????()d,bbaauvxuv?????d
2024-08-20 16:42
2025-07-25 15:39
【總結(jié)】微積分基本定理bxxxxxann????????1210?],[1iiixx???任取???niixf1)(?做和式:常數(shù))且有,(/))((lim10Anabfniin??????復(fù)習(xí):1、定積分是怎樣定義?設(shè)函數(shù)f(x)在[a,b]上連續(xù),在[a,b]中任意插
2025-04-29 01:42
【總結(jié)】calculus§定積分基本積分方法301sinsinxxdx???例:求32sinsinsinsinsincosxxxxxx????解:由于被積函數(shù)(1)一、直接積分法cossin,02cossin,2xxxxxx
2025-01-19 21:34