【總結(jié)】精品資源第25-29課時概率與統(tǒng)計問題的題型與方法一.復(fù)習(xí)目標(biāo):1.了解典型分布列:0~1分布,二項分布,幾何分布。2.了解離散型隨機變量的期望值、方差的意義,會根據(jù)離散型隨機變量的分布列求出期望值、方差。3.在實際中經(jīng)常用期望來比較兩個類似事件的水平,當(dāng)水平相近時,再用方差比較兩個類似事件的穩(wěn)定程度。4.了解正態(tài)分布的意義,能借助正態(tài)曲線的圖像理解正態(tài)曲線的
2025-03-25 06:47
【總結(jié)】立體幾何中的軌跡問題高考數(shù)學(xué)有一類學(xué)科內(nèi)的綜合題,它們的新穎性、綜合性,值得我們重視,在知識網(wǎng)絡(luò)交匯點處設(shè)計試題是高考命題改革的一個方向,以空間問題為為背景的軌跡問題作為解析幾何與立體幾何的交匯點,由于知識點多,數(shù)學(xué)思想和方法考查充分,求解比較困難。通常要求學(xué)生有較強的空間想象能力,以及能夠把空間問題轉(zhuǎn)化到平面上,再結(jié)合解析幾何方法求解,以下精選幾個問題來對這一問題進行探討,旨在探索題型規(guī)律
2025-09-25 16:57
【總結(jié)】第六講立體幾何新題型【考點透視】(A),對于異面直線的距離,、直線和平面所成的角、、二面角的平面角、兩個平行平面間的距離的概念.(B)版.①理解空間向量的概念,掌握空間向量的加法、減法和數(shù)乘.②了解空間向量的基本定理,理解空間向量坐標(biāo)的概念,掌握空間向量的坐標(biāo)運算.③掌握空間向量的數(shù)量積的定義及其性質(zhì),掌握用直角坐標(biāo)計算空間向量數(shù)量積公式.④理解直線的方向向量
2025-08-05 18:17
【總結(jié)】第一篇:立體幾何的平行與證明問題 立體幾何 1.知識網(wǎng)絡(luò) 一、經(jīng)典例題剖析 考點一點線面的位置關(guān)系 1、設(shè)l是直線,a,β是兩個不同的平面() A.若l∥a,l∥β,則a∥βB.若l∥a,...
2025-11-07 23:04
【總結(jié)】高考文科數(shù)學(xué)立體幾何大題題型基本平行、垂直證明.(2013年高考北京卷(文))如圖,在四棱錐中,,,,平面底面,,和分別是和的中點,求證:(1)底面;(2)平面;(3)平面平面【答案】(I)因為平面PAD⊥平面ABCD,且PA垂直于這個平面的交線AD所以PA垂直底面ABCD.(II)因為AB∥CD,CD=2AB,E為CD的中點所以AB∥DE,且AB=DE
2025-03-25 03:14
【總結(jié)】文科數(shù)學(xué)立體幾何大題題型題型一、基本平行、垂直1、如圖,在四棱臺中,平面,底面是平行四邊形,,,60°.(Ⅰ)證明:;(Ⅱ)證明:.2.如圖,四棱錐中,四邊形為矩形,為等腰三角形,,平面平面,且.分別為和的中點.(1)證明:平面;(2)證明:平面平面;(3)求四棱錐的體積.
2025-04-17 13:17
【總結(jié)】第一篇:立體幾何的證明方法1] 立體幾何的證明方法總結(jié) 文字語言表述部分: 一、線線平行的證明方法 1、利用平行四邊形; 2、利用三角形或梯形的中位線; 3、如果一條直線和一個平面平行,經(jīng)...
2025-11-06 05:28
【總結(jié)】立體幾何中的向量方法——方向向量與法向量如圖,l為經(jīng)過已知點A且平行于非零向量a的直線,那么非零向量a叫做直線l的方向向量。l?A?Pa1.直線的方向向量直線l的向量式方程換句話說,直線上的非零向量叫做直線的方向向量APta?一、方向向量與法向量
2025-08-05 10:46
【總結(jié)】第一篇:立體幾何證明問題 證明問題 ,E、F分別是長方體邊形 .-的棱A、C的中點,求證:四邊形是平行四 ,ABCD為正方形,SA⊥平面ABCD,過點A且垂直于SC的平面分別交SB、SC、SD...
2025-10-05 10:12
【總結(jié)】第30-34課時:參數(shù)取值問題的題型與方法134第30-34課時:參數(shù)取值問題的題型與方法(Ⅰ)參數(shù)取值問題的探討一、若在等式或不等式中出現(xiàn)兩個變量,其中一個變量的范圍已知,另一個變量的范圍為所求,且容易通過恒等變形將兩個變量分別置于等號或不等號的兩邊,則可將恒成立問題轉(zhuǎn)化成函數(shù)的最值問題求解。例1.已知當(dāng)x?R
2025-08-27 15:59
【總結(jié)】立體幾何體積問題1、在如圖所示的五面體中,四邊形為菱形,且,平面,,為中點.(1)求證平面;(2)若平面平面,求到平面的距離.【答案】(1)見解析;(2)試題解析(2)由(1)得平面,所以到平面的距離等于到平面的距離.取的中點,連接,因為四邊形為菱形,且,,所以,,因為平面平面,平面平面,所以平面,,因為,所以,學(xué)
2025-03-25 06:43
【總結(jié)】精品資源第13-16課時課題:三角問題的題型與方法一.復(fù)習(xí)目標(biāo):1.熟練掌握三角變換的所有公式,理解每個公式的意義,應(yīng)用特點,常規(guī)使用方法等.2.熟悉三角變換常用的方法——化弦法,降冪法,角的變換法等.并能應(yīng)用這些方法進行三角函數(shù)式的求值、化簡、證明.3.掌握三角變換公式在三角形中應(yīng)用的特點,并能結(jié)合三角形的公式解決一些實際問題.4.熟練掌握正弦函數(shù)、余弦函數(shù)、正切函數(shù)
2025-03-26 03:08
【總結(jié)】精品資源第9-12課時課題:不等式問題的題型與方法一.復(fù)習(xí)目標(biāo):1.在熟練掌握一元一次不等式(組)、一元二次不等式的解法基礎(chǔ)上,掌握其它的一些簡單不等式的解法.通過不等式解法的復(fù)習(xí),提高學(xué)生分析問題、解決問題的能力以及計算能力;2.掌握解不等式的基本思路,即將分式不等式、絕對值不等式等不等式,化歸為整式不等式(組),會用分類、換元、數(shù)形結(jié)合的方法解不等式;3.通過復(fù)習(xí)不等式的
2025-03-25 06:48
【總結(jié)】第一篇:立體幾何中不等式問題的證明方法 例談立體幾何中不等式問題的證明方法 立體幾何中的不等式問題具有很強的綜合性,解決這類問題既要有較強的空間想象能力,又要有嚴(yán)密的邏輯思維能力,因此有一定的難度...
2025-11-03 12:34
【總結(jié)】第一篇:,第2課時,利用空間向量證明平行、垂直關(guān)系 立體幾何中的向量方法(2) 2、利用空間向量證明平行、垂直關(guān)系 基礎(chǔ)性練習(xí): 1、在空間四邊形ABCD中,E、F分別是AB、BC的中點,則A...
2025-10-05 04:33