【總結(jié)】第一篇:立體幾何的平行與證明問題 立體幾何 1.知識(shí)網(wǎng)絡(luò) 一、經(jīng)典例題剖析 考點(diǎn)一點(diǎn)線面的位置關(guān)系 1、設(shè)l是直線,a,β是兩個(gè)不同的平面() A.若l∥a,l∥β,則a∥βB.若l∥a,...
2025-11-07 23:04
【總結(jié)】立體幾何??甲C明題匯總考點(diǎn)1:證平行(利用三角形中位線),異面直線所成的角已知四邊形是空間四邊形,分別是邊的中點(diǎn)(1)求證:EFGH是平行四邊形AHGFEDCB(2)若BD=,AC=2,EG=2。求異面直線AC、BD所成的角和EG、BD所成的角??键c(diǎn)2:線面垂直,面面垂直的判定如圖,已知空間四邊形中,,是的中點(diǎn)。
2025-04-04 05:14
【總結(jié)】第一篇:線面平行與垂直的證明題 勤志數(shù)學(xué) 線面平行與垂直的證明 1:如圖,在棱長為1的正方體ABCD-A1B1C1D1中.(1)求證:AC⊥平面B1BDD1; (2)求三棱錐B-ACB1體積....
2025-10-19 15:23
【總結(jié)】高一立體幾何平行、垂直解答題精選1.已知直三棱柱ABC-A1B1C1,點(diǎn)N在AC上且CN=3AN,點(diǎn)M,P,Q分別是AA1,A1B1,:直線PQ∥平面BMN.2.如圖,在正方形ABCD-A1B1C1D1中,E,F(xiàn),M分別是棱B1C1,BB1,C1D1的中點(diǎn),是否存在過點(diǎn)E,M且與平面A1FC平行的平面?若存在,請(qǐng)作出并證明;若不存在,請(qǐng)說明理由
2025-03-26 05:39
【總結(jié)】立體幾何——平行的證明【例1】如圖,四棱錐P-ABCD的底面是平行四邊形,點(diǎn)E、F分別為棱AB、PD的中點(diǎn).求證:AF∥平面PCE;(第1題圖)分析:取PC的中點(diǎn)G,連EG.,F(xiàn)G,則易證AEGF是平行四邊形【例2】如圖,已知直角梯形ABCD中,AB∥CD,AB⊥BC,AB=1,BC=2,CD=1+,過A作AE⊥CD,垂足為E,G
2025-03-26 05:42
【總結(jié)】線面垂直判定1、已知:如圖,PA⊥AB,PA⊥AC。求證:PA⊥平面ABC。2、已知:如圖,PA⊥AB,BC⊥平面PAC。求證:PA⊥BC。3、如圖,在三棱錐V-ABC中,VA=VC,AB=BC。求證:VBAC4、在正方體ABCD-EFGH中,O為底面ABCD中心。求證:BD平面AEGC
2025-03-25 07:09
【總結(jié)】立體幾何選擇題:一、三視圖考點(diǎn)透視:①能想象空間幾何體的三視圖,并判斷(選擇題).②通過三視圖計(jì)算空間幾何體的體積或表面積.③解答題中也可能以三視圖為載體考查證明題和計(jì)算題.,該幾何體的體積為,則正視圖中x的值為()A.5B.4C
【總結(jié)】立體幾何垂直關(guān)系專題高考中立體幾何解答題中垂直關(guān)系的基本題型是:證明空間線面垂直需注意以下幾點(diǎn):①由已知想性質(zhì),由求證想判定,即分析法與綜合法相結(jié)合尋找證題思路。②立體幾何論證題的解答中,利用題設(shè)條件的性質(zhì)適當(dāng)添加輔助線(或面或輔助體)是解題的常用方法之一。③明確何時(shí)應(yīng)用判定定理,何時(shí)應(yīng)用性質(zhì)定理,用定理時(shí)要先申明條件再由定理得出相應(yīng)結(jié)論。④三垂線定理及其逆定理在高考題中
2025-03-25 06:43
【總結(jié)】第一篇:立體幾何證明 1、(14分)如圖,在正方體ABCD-A1B1C1D1中,E、F為棱AD、AB的中點(diǎn).(1)求證:EF∥平面CB1D1; (2)求證:平面CAA1C1⊥平面CB1D1. A...
2025-11-03 12:11
【總結(jié)】幾何證明、B、C在同一直線上,在直線AC的同側(cè)作和,連接AF,CE.取AF、CE的中點(diǎn)M、N,連接BM,BN,MN.(1)若和是等腰直角三角形,且(如圖1),則是 三角形.(2)在和中,若BA=BE,BC=BF,且,(如圖2),則是 三角形,且.(3)若將(2)中的繞點(diǎn)B旋轉(zhuǎn)一定角度,(如同3),其他條件不變,那么(2)中的結(jié)論是否成立?若成立,
2025-03-24 12:34
【總結(jié)】立體幾何-平行與垂直練習(xí)題1.空間四邊形SABC中,SO平面ABC,O為ABC的垂心,求證:(1)AB平面SOC(2)平面SOC平面SAB2.如圖所示,在正三棱柱ABC-A1B1C1中,E,M分別為BB1,A1C的中點(diǎn),求證:(1)EM平面AA1C1C;(2)平面A1EC平面AA1C1C;3.如圖,矩形ABCD中,AD⊥平面ABE,BE=BC,F為C
【總結(jié)】第一篇:線面垂直判定經(jīng)典證明題 線面垂直判定 1、已知:如圖,PA⊥AB,PA⊥AC。 求證:PA⊥平面ABC。 2、已知:如圖,PA⊥AB,BC⊥平面PAC。 求證:PA⊥BC。 3、如...
2025-10-31 12:06
【總結(jié)】第一篇:立體幾何題證明方法 立體幾何題型與方法 1.平面的基本性質(zhì):掌握三個(gè)公理及推論,會(huì)說明共點(diǎn)、共線、共面問題。 (1)證明點(diǎn)共線的問題,一般轉(zhuǎn)化為證明這些點(diǎn)是某兩個(gè)平面的公共點(diǎn)(依據(jù):由點(diǎn)...
2025-11-06 05:28
【總結(jié)】第一篇:立體幾何證明與解答 必修2第一章《立體幾何初步》單元教學(xué)分析 1、本章節(jié)在整個(gè)教材體系中的地位和作用 本章教材是高中數(shù)學(xué)學(xué)習(xí)的重點(diǎn)之一,通過研究空間幾何體的結(jié)構(gòu)特征、三視圖和直觀圖、表面...
2025-11-06 06:00
【總結(jié)】立體幾何證明------垂直1.空間兩條直線的位置關(guān)系有:_________,_________,_________三種。2.(公理4)平行于同一條直線的兩條直線互相_________.3.直線與平面的位置關(guān)系有_____________,_____________,_____________三種。4.直線與平面平行判定定理:如果_________的一條直線和
2025-06-25 00:01