【總結(jié)】1函數(shù)的單調(diào)性與奇偶性講義一,目的要求:(1)理解函數(shù)單調(diào)性的概念,掌握用定義的方法來判斷函數(shù)在給定區(qū)間內(nèi)的增減性。(2)理解函數(shù)奇偶性的概念,掌握奇偶函數(shù)的性質(zhì)。(3)結(jié)合函數(shù)的單調(diào)性和奇偶性,掌握類似判斷函數(shù)值大小等各類綜合運用問題。二,知識要點:(1)函數(shù)的單調(diào)性設(shè)函數(shù)的定義域為,區(qū)間。如果對于上任意的兩點及,當()fxDI?I1x2時,不等
2025-08-04 14:15
【總結(jié)】復(fù)合函數(shù)的單調(diào)性和奇偶性 1、復(fù)合函數(shù)的概念 如果是的函數(shù),又是的函數(shù),即,,那么關(guān)于的函數(shù)叫做函數(shù)和的復(fù)合函數(shù),其中是中間變量,自變量為函數(shù)值為?!±纾汉瘮?shù)是由和復(fù)合而成。2、復(fù)合函數(shù)單調(diào)性復(fù)合函數(shù)單調(diào)性判定方法:定理:設(shè)函數(shù)u=g(x)在區(qū)間M上有意義,函數(shù)y=f(u)在區(qū)間N上有意義,且當X∈M時,u∈N。增函數(shù)增函數(shù)增函數(shù)增函
2025-04-04 04:22
【總結(jié)】(一)課型:新授課教學(xué)目標:(1)知識與能力:理解增函數(shù)、減函數(shù)、單調(diào)區(qū)間、單調(diào)性等概念,掌握增(減)函數(shù)的證明和判別,學(xué)會運用函數(shù)圖象理解和研究函數(shù)的性質(zhì)。(2)過程與方法:引導(dǎo)學(xué)生通過觀察,歸納,抽象,概括自主構(gòu)建單調(diào)性的概念,使學(xué)生領(lǐng)會數(shù)形結(jié)合的思想方法。(3)情感,態(tài)度,價值觀:培養(yǎng)學(xué)生主動探索,敢于創(chuàng)新的意識和精神,使學(xué)生理性思考生活中的增長和遞減的現(xiàn)象。
2025-07-25 05:18
【總結(jié)】高中數(shù)學(xué)必修1對數(shù)函數(shù)(3)單調(diào)性與奇偶性新課、復(fù)合函數(shù)單調(diào)性問題1)(xf)(xg)]([)]([xfgxgf或求下列函數(shù)的單調(diào)區(qū)間)1(2log)1(??xy)1(21log)2(??xy)23(22log)3(???xxy)32(212lo
2025-05-15 02:15
【總結(jié)】函數(shù)單調(diào)性、奇偶性練習(xí)一、選擇題1.若函數(shù)f(x)=x(x∈R),則函數(shù)y=-f(x)在其定義域內(nèi)是( )A.單調(diào)遞增的偶函數(shù) B.單調(diào)遞增的奇函數(shù)C.單調(diào)遞減的偶函數(shù) D.單調(diào)遞減的奇函數(shù)2.下列函數(shù)中是奇函數(shù)且在(0,1)上遞增的函數(shù)是( )A.f(x)=x+ B.f(x)=x2-C.f(x)= D.f(x)=x33.已知y=f(x)是定義在
2025-06-18 20:37
【總結(jié)】函數(shù)的單調(diào)性與奇偶性1.若為偶函數(shù),則下列點的坐標在函數(shù)圖像上的是A.B.C.D.2.下列函數(shù)中,在區(qū)間(0,1)上是增函數(shù)的是A.B.C.3.下列判斷中正確的是
2025-03-24 12:17
【總結(jié)】函數(shù)的單調(diào)性、奇偶性基礎(chǔ)卷選擇題1.若函數(shù)是奇函數(shù),則m的取值是(?。 ? 2.已知函數(shù)y=f(x)在(-3,0)上是減函數(shù),又y=f(x-3)是偶函數(shù),則下列結(jié)論正確的是(?。〢.
2025-08-04 16:22
【總結(jié)】百度搜索李蕭蕭文檔百度搜索李蕭蕭文檔難點8奇偶性與單調(diào)性(二)函數(shù)的單調(diào)性、奇偶性是高考的重點和熱點內(nèi)容之一,特別是兩性質(zhì)的應(yīng)用更加突出.本節(jié)主要幫助考生學(xué)會怎樣利用兩性質(zhì)解題,掌握基本方法,形成應(yīng)用意識.●難點磁場(★★★★★)已知偶函數(shù)f(x)在(0,+∞)上為增函數(shù),且f(2)=0,解不等式f[log2(x
2025-08-14 13:54
【總結(jié)】......函數(shù)單調(diào)性、奇偶性、周期性和對稱性的綜合應(yīng)用例1、設(shè)f(x)是定義在R上的奇函數(shù),且的圖象關(guān)于直線對稱,則f(1)+f(2)+f(3)+f(4)+f(5)=_0_______________.【考點分析
2025-06-16 08:18
【總結(jié)】第十二課時函數(shù)的單調(diào)性和奇偶性【學(xué)習(xí)導(dǎo)航】學(xué)習(xí)要求:1、熟練掌握函數(shù)單調(diào)性,并理解復(fù)合函數(shù)的單調(diào)性問題。2、熟練掌握函數(shù)奇偶性及其應(yīng)用。3、學(xué)會對函數(shù)單調(diào)性,奇偶性的綜合應(yīng)用。【精典范例】一、利用函數(shù)單調(diào)性求函數(shù)最值例1、已知函數(shù)y=f(x)對任意x,y∈R均為f(x)+f(y)=f(x+y),且當x
2024-12-05 11:37
【總結(jié)】1、已知的定義域為R,且對任意實數(shù)x,y滿足,求證:是偶函數(shù)。2、已知f(x)是定義在(-∞,+∞)上的不恒為零的函數(shù),且對定義域內(nèi)的任意x,y,f(x)都滿足f(xy)=yf(x)+xf(y).(1)求f(1),f(-1)的值;(2)判斷f(x)的奇偶性,并說明理由.3、函數(shù)f(x)對任意x?y∈R,總有f(x)+f(y)=f(x+y),且當x0時,
2025-06-19 04:49
【總結(jié)】第十二課時函數(shù)的單調(diào)性和奇偶性【學(xué)習(xí)導(dǎo)航】學(xué)習(xí)要求:1、熟練掌握函數(shù)單調(diào)性,并理解復(fù)合函數(shù)的單調(diào)性問題。2、熟練掌握函數(shù)奇偶性及其應(yīng)用。3、學(xué)會對函數(shù)單調(diào)性,奇偶性的綜合應(yīng)用?!揪浞独恳?、利用函數(shù)單調(diào)性求函數(shù)最值例1、已知函數(shù)y=f(x)對任意x,y∈R均為f(x)+f(y)=f(x+y),且當x0時,f(x)0,f(1)=-.(1
2025-06-07 23:22
【總結(jié)】函數(shù)單調(diào)性、奇偶性、對稱性、周期性解析一、函數(shù)的單調(diào)性1.單調(diào)函數(shù)與嚴格單調(diào)函數(shù)設(shè)為定義在上的函數(shù),若對任何,當時,總有(ⅰ),則稱為上的增函數(shù),特別當且僅當嚴格不等式成立時稱為上的嚴格單調(diào)遞增函數(shù)。(ⅱ),則稱為上的減函數(shù),特別當且僅當嚴格不等式成立時稱為上的嚴格單調(diào)遞減函數(shù)。2.函數(shù)單調(diào)的充要條件★若為區(qū)間上的單調(diào)遞增函數(shù),、為區(qū)間內(nèi)兩任意值,那么有:或
2025-06-16 08:23
【總結(jié)】年級學(xué)科導(dǎo)學(xué)案編寫人:初審人:備課組長::使用時間課題:第2課時函數(shù)的單調(diào)性、奇偶性和周期性班級:姓名:【學(xué)習(xí)目標】1、理解函數(shù)的單調(diào)性、奇偶性和周期性的定義2、會判斷并證明函數(shù)的單調(diào)性、奇偶性
2025-08-04 09:14
【總結(jié)】3高一數(shù)學(xué)函數(shù)練習(xí)題一、求函數(shù)的定義域1、求下列函數(shù)的定義域:⑴⑵⑶2、設(shè)函數(shù)的定義域為,則函數(shù)的定義域為___;函數(shù)的定義域為________;3、若函數(shù)的定義域為,則函數(shù)的定義域是;函數(shù)的定義域為。4、知函數(shù)的定義域為,且函數(shù)的定義域存在,求實數(shù)的取值范圍。
2025-03-25 02:03