【總結(jié)】......二次函數(shù)的最值問(wèn)題二次函數(shù)是初中函數(shù)的主要內(nèi)容,也是高中學(xué)習(xí)的重要基礎(chǔ).在初中階段大家已經(jīng)知道:二次函數(shù)在自變量取任意實(shí)數(shù)時(shí)的最值情況(當(dāng)時(shí),函數(shù)在處取得最小值,無(wú)最大值;當(dāng)時(shí),函數(shù)在處取得最大值,無(wú)最小值.
2025-03-26 23:36
【總結(jié)】淺析原函數(shù)存在性問(wèn)題摘要在微積分學(xué)中,—萊布尼茲公式將定積分的計(jì)算問(wèn)題轉(zhuǎn)化為求原函數(shù)的問(wèn)題,因此,;其次得出了原函數(shù)存在的條件;再次從原函數(shù)與定積分的聯(lián)系、三類(lèi)可積函數(shù)的原函數(shù)存在性問(wèn)題、原函數(shù)存在時(shí)函數(shù)的可積性問(wèn)題三方面闡述了函數(shù)的可積性與原函數(shù)的存在性是相互獨(dú)立形成的概念,.關(guān)鍵詞原函數(shù)定積分微積分基本定理間斷點(diǎn)
2025-08-07 10:41
【總結(jié)】......二次函數(shù)恒成立問(wèn)題2016年8月東莞莞美學(xué)校一、恒成立問(wèn)題的基本類(lèi)型:類(lèi)型1:設(shè),(1)上恒成立;(2)上恒成立。類(lèi)型2:設(shè)(1)當(dāng)時(shí),上恒成立,上恒成立(2)當(dāng)時(shí),上恒成立上
2025-03-24 06:26
【總結(jié)】 個(gè)性化學(xué)案二次函數(shù)綜合應(yīng)用題(拱橋問(wèn)題)適用學(xué)科數(shù)學(xué)適用年級(jí)初中三年級(jí)適用區(qū)域全國(guó)課時(shí)時(shí)長(zhǎng)(分鐘)60知識(shí)點(diǎn)二次函數(shù)解析式的確定、二次函數(shù)的性質(zhì)和應(yīng)用教學(xué)目標(biāo)。2學(xué)會(huì)用二次函數(shù)知識(shí)解決實(shí)際問(wèn)題,掌握數(shù)學(xué)建模的思想,進(jìn)一步熟悉,點(diǎn)坐標(biāo)和線段之間的轉(zhuǎn)化。,體會(huì)到數(shù)學(xué)來(lái)源于生活,又服務(wù)于生活,感受數(shù)學(xué)的應(yīng)用價(jià)值。教學(xué)重點(diǎn),并能理解
【總結(jié)】二次函數(shù)專(zhuān)題:角度一、有關(guān)角相等1、已知拋物線的圖象與軸交于、兩點(diǎn)(點(diǎn)在點(diǎn)的左邊),與軸交于點(diǎn),,過(guò)點(diǎn)作軸的平行線與拋物線交于點(diǎn),拋物線的頂點(diǎn)為,直線經(jīng)過(guò)、兩點(diǎn).(1)求此拋物線的解析式;(2)連接、、,試比較和的大小,并說(shuō)明你的理由.對(duì)于第(2)問(wèn),比較角的大小a、如果是特殊角,也就是我們能分別計(jì)算出這兩個(gè)角的大小,那么他們之間的大小關(guān)系就清楚了b
2025-03-24 06:24
【總結(jié)】二次函數(shù)綜合問(wèn)題1:已知函數(shù)在區(qū)間內(nèi)單調(diào)遞減,則a的取值范圍是變式1:已知函數(shù)在區(qū)間(,1)上為增函數(shù),那么的取值范圍是_________.變式2:已知函數(shù)在上是單調(diào)函數(shù),求實(shí)數(shù)的取值范圍.2:已知函數(shù)在區(qū)間[0,m]上有最大值3,最小值2,則m的取值范圍是變式1:若函數(shù)的最大值為M,最小值為m,則M+m的值等于__
2025-04-04 04:25
【總結(jié)】二次函數(shù)最大利潤(rùn)問(wèn)題,每件的成本是50元,為了合理定價(jià),投放市場(chǎng)進(jìn)行試銷(xiāo).據(jù)市場(chǎng)調(diào)查,銷(xiāo)售單價(jià)是100元時(shí),每天的銷(xiāo)售量是50件,而銷(xiāo)售單價(jià)每降低1元,每天就可多售出5件,但要求銷(xiāo)售單價(jià)不得低于成本.(1)求出每天的銷(xiāo)售利潤(rùn)y(元)與銷(xiāo)售單價(jià)x(元)之間的函數(shù)關(guān)系式;(2)求出銷(xiāo)售單價(jià)為多少元時(shí),每天的銷(xiāo)售利潤(rùn)最大?最大利潤(rùn)是多少?(3)如果該企業(yè)要使每天的銷(xiāo)售利潤(rùn)不低于4000
【總結(jié)】二次函數(shù)與面積問(wèn)題一、S△=×水平寬×鉛錘高如圖1,過(guò)△ABC的三個(gè)頂點(diǎn)分別作出與水平垂直的三條線,外側(cè)兩條直線之間的距離叫△ABC的“水平寬”,中間的這條直線在△ABC內(nèi)部線段的長(zhǎng)度叫△ABC的“鉛垂高h(yuǎn)”。三角形面積的新方法:,即三角形面積等于水平寬與鉛垂高乘積的一半。注意事項(xiàng):、C的坐標(biāo),橫坐標(biāo)大減小,即可求出水平寬;,A與D的橫坐標(biāo)相同,A
【總結(jié)】........函數(shù)中的恒成立、恰成立和能成立問(wèn)題教學(xué)目標(biāo):結(jié)合具體函數(shù),討論關(guān)于任意與存在性問(wèn)題的一般解題方法過(guò)程與方法通過(guò)研究具體函數(shù)及其圖象,將任意與存在性問(wèn)題轉(zhuǎn)化為函數(shù)值域關(guān)系或最值關(guān)系問(wèn)題:已知函數(shù),函數(shù),當(dāng)時(shí),對(duì)任意,是否存在,
2025-03-24 12:15
【總結(jié)】一次函數(shù)與四邊形綜合專(zhuān)題 1.如圖,將一個(gè)正方形紙片OABC放置在平面直角坐標(biāo)系中,其中A(1,0),C(0,1),P為AB邊上一個(gè)動(dòng)點(diǎn),折疊該紙片,使O點(diǎn)與P點(diǎn)重合,折痕l與OP交于點(diǎn)M,與對(duì)角線AC交于Q點(diǎn)(Ⅰ)若點(diǎn)P的坐標(biāo)為(1,),求點(diǎn)M的坐標(biāo);(Ⅱ)若點(diǎn)P的坐標(biāo)為(1,t)①求點(diǎn)M的坐標(biāo)(用含t的式子表示)(直接寫(xiě)出答案)②求點(diǎn)Q的坐標(biāo)(用含t的式子表示)
2025-03-24 05:35
【總結(jié)】二次函數(shù)零點(diǎn)問(wèn)題【探究拓展】探究1:設(shè)分別是實(shí)系數(shù)一元二次方程和的一個(gè)根,且求證:方程有且僅有一根介于之間.變式1:已知函數(shù)f(x)=ax2+4x+b(a0,a、b∈R),設(shè)關(guān)于x的方程f(x)=0的兩實(shí)根為x1、x2,方程f(x)=x的兩實(shí)根為α、β.(1)若|α-β|=1,求a、b的關(guān)系式;(2)若a、b均為負(fù)整數(shù)
2025-03-24 06:28
【總結(jié)】周長(zhǎng)最小問(wèn)題基本解題方法:
2025-06-07 15:20
【總結(jié)】......典型中考題(有關(guān)二次函數(shù)的最值)屠園實(shí)驗(yàn)周前猛一、選擇題1.已知二次函數(shù)y=a(x-1)2++b有最小值–1,則a與b之間的大小關(guān)()A.ab=b
【總結(jié)】二次函數(shù)面積最大問(wèn)題姓名:1、如圖,已知拋物線y=x2+bx+c的圖象與x軸的一個(gè)交點(diǎn)為B(5,0),另一個(gè)交點(diǎn)為A,且與y軸交于點(diǎn)C(0,5).(1)求直線BC與拋物線的解析式;(2)若點(diǎn)M是拋物線在x軸下方圖象上的一動(dòng)點(diǎn),過(guò)點(diǎn)M作MN∥y軸交直線BC于點(diǎn)N,求MN的最大值;(3)求三角形CBM的最大值2、如圖,對(duì)稱(chēng)軸
【總結(jié)】???xyo(1)配方。(2)畫(huà)圖象。(3)根據(jù)圖象確定函數(shù)最值。(看所給范圍內(nèi)的最高點(diǎn)和最低點(diǎn))122(a0)xxxyaxbxc??????求給定范圍內(nèi),二次函數(shù)最值的步驟:??2324yx???試判斷函數(shù)
2024-11-21 23:43