【總結】......二次函數(shù)的最值問題二次函數(shù)是初中函數(shù)的主要內(nèi)容,也是高中學習的重要基礎.在初中階段大家已經(jīng)知道:二次函數(shù)在自變量取任意實數(shù)時的最值情況(當時,函數(shù)在處取得最小值,無最大值;當時,函數(shù)在處取得最大值,無最小值.
2025-03-26 23:36
【總結】淺析原函數(shù)存在性問題摘要在微積分學中,—萊布尼茲公式將定積分的計算問題轉化為求原函數(shù)的問題,因此,;其次得出了原函數(shù)存在的條件;再次從原函數(shù)與定積分的聯(lián)系、三類可積函數(shù)的原函數(shù)存在性問題、原函數(shù)存在時函數(shù)的可積性問題三方面闡述了函數(shù)的可積性與原函數(shù)的存在性是相互獨立形成的概念,.關鍵詞原函數(shù)定積分微積分基本定理間斷點
2025-08-07 10:41
【總結】......二次函數(shù)恒成立問題2016年8月東莞莞美學校一、恒成立問題的基本類型:類型1:設,(1)上恒成立;(2)上恒成立。類型2:設(1)當時,上恒成立,上恒成立(2)當時,上恒成立上
2025-03-24 06:26
【總結】 個性化學案二次函數(shù)綜合應用題(拱橋問題)適用學科數(shù)學適用年級初中三年級適用區(qū)域全國課時時長(分鐘)60知識點二次函數(shù)解析式的確定、二次函數(shù)的性質和應用教學目標。2學會用二次函數(shù)知識解決實際問題,掌握數(shù)學建模的思想,進一步熟悉,點坐標和線段之間的轉化。,體會到數(shù)學來源于生活,又服務于生活,感受數(shù)學的應用價值。教學重點,并能理解
【總結】二次函數(shù)專題:角度一、有關角相等1、已知拋物線的圖象與軸交于、兩點(點在點的左邊),與軸交于點,,過點作軸的平行線與拋物線交于點,拋物線的頂點為,直線經(jīng)過、兩點.(1)求此拋物線的解析式;(2)連接、、,試比較和的大小,并說明你的理由.對于第(2)問,比較角的大小a、如果是特殊角,也就是我們能分別計算出這兩個角的大小,那么他們之間的大小關系就清楚了b
2025-03-24 06:24
【總結】二次函數(shù)綜合問題1:已知函數(shù)在區(qū)間內(nèi)單調遞減,則a的取值范圍是變式1:已知函數(shù)在區(qū)間(,1)上為增函數(shù),那么的取值范圍是_________.變式2:已知函數(shù)在上是單調函數(shù),求實數(shù)的取值范圍.2:已知函數(shù)在區(qū)間[0,m]上有最大值3,最小值2,則m的取值范圍是變式1:若函數(shù)的最大值為M,最小值為m,則M+m的值等于__
2025-04-04 04:25
【總結】二次函數(shù)最大利潤問題,每件的成本是50元,為了合理定價,投放市場進行試銷.據(jù)市場調查,銷售單價是100元時,每天的銷售量是50件,而銷售單價每降低1元,每天就可多售出5件,但要求銷售單價不得低于成本.(1)求出每天的銷售利潤y(元)與銷售單價x(元)之間的函數(shù)關系式;(2)求出銷售單價為多少元時,每天的銷售利潤最大?最大利潤是多少?(3)如果該企業(yè)要使每天的銷售利潤不低于4000
【總結】二次函數(shù)與面積問題一、S△=×水平寬×鉛錘高如圖1,過△ABC的三個頂點分別作出與水平垂直的三條線,外側兩條直線之間的距離叫△ABC的“水平寬”,中間的這條直線在△ABC內(nèi)部線段的長度叫△ABC的“鉛垂高h”。三角形面積的新方法:,即三角形面積等于水平寬與鉛垂高乘積的一半。注意事項:、C的坐標,橫坐標大減小,即可求出水平寬;,A與D的橫坐標相同,A
【總結】........函數(shù)中的恒成立、恰成立和能成立問題教學目標:結合具體函數(shù),討論關于任意與存在性問題的一般解題方法過程與方法通過研究具體函數(shù)及其圖象,將任意與存在性問題轉化為函數(shù)值域關系或最值關系問題:已知函數(shù),函數(shù),當時,對任意,是否存在,
2025-03-24 12:15
【總結】一次函數(shù)與四邊形綜合專題 1.如圖,將一個正方形紙片OABC放置在平面直角坐標系中,其中A(1,0),C(0,1),P為AB邊上一個動點,折疊該紙片,使O點與P點重合,折痕l與OP交于點M,與對角線AC交于Q點(Ⅰ)若點P的坐標為(1,),求點M的坐標;(Ⅱ)若點P的坐標為(1,t)①求點M的坐標(用含t的式子表示)(直接寫出答案)②求點Q的坐標(用含t的式子表示)
2025-03-24 05:35
【總結】二次函數(shù)零點問題【探究拓展】探究1:設分別是實系數(shù)一元二次方程和的一個根,且求證:方程有且僅有一根介于之間.變式1:已知函數(shù)f(x)=ax2+4x+b(a0,a、b∈R),設關于x的方程f(x)=0的兩實根為x1、x2,方程f(x)=x的兩實根為α、β.(1)若|α-β|=1,求a、b的關系式;(2)若a、b均為負整數(shù)
2025-03-24 06:28
【總結】周長最小問題基本解題方法:
2025-06-07 15:20
【總結】......典型中考題(有關二次函數(shù)的最值)屠園實驗周前猛一、選擇題1.已知二次函數(shù)y=a(x-1)2++b有最小值–1,則a與b之間的大小關()A.ab=b
【總結】二次函數(shù)面積最大問題姓名:1、如圖,已知拋物線y=x2+bx+c的圖象與x軸的一個交點為B(5,0),另一個交點為A,且與y軸交于點C(0,5).(1)求直線BC與拋物線的解析式;(2)若點M是拋物線在x軸下方圖象上的一動點,過點M作MN∥y軸交直線BC于點N,求MN的最大值;(3)求三角形CBM的最大值2、如圖,對稱軸
【總結】???xyo(1)配方。(2)畫圖象。(3)根據(jù)圖象確定函數(shù)最值。(看所給范圍內(nèi)的最高點和最低點)122(a0)xxxyaxbxc??????求給定范圍內(nèi),二次函數(shù)最值的步驟:??2324yx???試判斷函數(shù)
2024-11-21 23:43