【總結(jié)】精品資源第六講雞兔同籠問題 例1(古典題)雞兔同籠,頭共46,足共128,雞兔各幾只? 分析如果46只都是兔,一共應(yīng)有4×46=184只腳,這和已知的128只腳相比多了184-128=,就要減少4-2=2(只),46只兔里應(yīng)該換進幾只雞才能使56只腳的差數(shù)就沒有了呢?顯然,56÷2=28,,雞的只數(shù)就是28,兔的只數(shù)是46-28=18。 解:①
2025-03-26 03:10
【總結(jié)】精品資源第05講函數(shù)最值的應(yīng)用一、最值綜合與應(yīng)用問題:(一)知識歸納:1.最值綜合問題:這是中學(xué)數(shù)學(xué)最重要的題型之一,題型非常廣泛. ①幾何圖形的最值問題:在平幾、立幾、解幾圖形中求解面積、體積、距離及各種幾何量的最大、最小值;②代數(shù)中的最值問題:求解方程(或不等式)的最大、最小解,數(shù)列的最大、最小項,變量或代數(shù)式的最大、最小取值,等等;2.最值應(yīng)用問題:這是
2025-06-29 16:24
【總結(jié)】求解最值問題的幾種思路最值問題涉及的知識面較廣,解法靈活多變,越含著豐富的數(shù)學(xué)思想方法,對發(fā)展學(xué)生的思維,.一、利用非負數(shù)的性質(zhì)在實數(shù)范圍內(nèi),顯然有,當(dāng)且僅當(dāng)時,等號成立,即的最小值為.例1形碼設(shè)、為實數(shù),求的最小值.解析==
2025-03-25 05:12
【總結(jié)】......橢圓中的常見最值問題1、橢圓上的點P到二焦點的距離之積取得最大值的點是橢圓短軸的端點,取得最小值的點在橢圓長軸的端點。例1、橢圓上一點到它的二焦點的距離之積為,則取得的最大值時,P點的坐標(biāo)是
2025-03-25 04:50
【總結(jié)】最值問題(1)1、(11豐臺一摸)已知:在△ABC中,BC=a,AC=b,以AB為邊作等邊三角形ABD.探究下列問題:(1)如圖1,當(dāng)點D與點C位于直線AB的兩側(cè)時,a=b=3,且∠ACB=60°,則CD=;(2)如圖2,當(dāng)點D與點C位于直線AB的同側(cè)時,a=b=6,且∠ACB=90°,則CD=;(3)
2025-03-25 03:43
【總結(jié)】WORD資料可編輯嘔心整理圓錐曲線中的7類最值問題圓錐曲線最值問題是高考中的一類常見問題,解此類問題與解代數(shù)中的最值問題方法類似,由于圓錐曲線的最值問題與曲線有關(guān),所以利用曲線性質(zhì)求解是其特有的方法。下面介紹7種常見求解方法1【二次函數(shù)法】將所求問題轉(zhuǎn)
2025-03-24 23:43
【總結(jié)】精品資源第04講函數(shù)的極值與最值(一)知識歸納:1.極值:①定義:設(shè)函數(shù)f(x)在x0及附近有定義,如果對x0附近的所有點都有1)的一個極大值;2)的一個極小值.②函數(shù)f(x)的極值只可能在的點x0處(但必須有x0處左、右的導(dǎo)數(shù)值異號)或不可導(dǎo)點x0處取得;若f(x0)是函數(shù)的一個極值,則f(x)在點x0處的圖象呈山峰狀(或山谷狀).2.最值
2025-06-29 15:33
【總結(jié)】解析幾何中的最值問題一、教學(xué)目標(biāo)解析幾何中的最值問題以直線或圓錐曲線作為背景,以函數(shù)和不等式等知識作為工具,具有較強的綜合性,這類問題的解決沒有固定的模式,其解法一般靈活多樣,且對于解題者有著相當(dāng)高的能力要求,正基于此,這類問題近年來成為了數(shù)學(xué)高考中的難關(guān)。二、教學(xué)重點方法的靈活應(yīng)用。三、教學(xué)程序1、基礎(chǔ)知識。探求解析幾何最值的方法有以下幾種。⑴函數(shù)法
2025-09-25 16:15
【總結(jié)】圓錐曲線的最值、范圍問題與圓錐曲線有關(guān)的范圍、最值問題,各種題型都有,既有對圓錐曲線的性質(zhì)、曲線與方程關(guān)系的研究,又對最值范圍問題有所青睞,它能綜合應(yīng)用函數(shù)、三角、不等式等有關(guān)知識,緊緊抓住圓錐曲線的定義進行轉(zhuǎn)化,充分展現(xiàn)數(shù)形結(jié)合、函數(shù)與方程、化歸轉(zhuǎn)化等數(shù)學(xué)思想在解題中的應(yīng)用,本文從下面幾個方面闡述該類題型的求解方法,以引起讀者注意.一、利用圓錐曲線定義求最值借助圓錐曲線定義將
2025-03-25 00:04
【總結(jié)】數(shù)列的最值問題及單調(diào)數(shù)列問題求等差數(shù)列前n項和最值的兩種方法(1)函數(shù)法:利用等差數(shù)列前n項和的函數(shù)表達式,通過配方或借助圖象求二次函數(shù)最值的方法求解.(2)鄰項變號法①時,滿足的項數(shù)m使得取得最大值為;②當(dāng)時,滿足的項數(shù)m使得取得最小值為.例1、在等差數(shù)列{an}中,已知a1=20,前n項和為Sn,且S10=S15,求當(dāng)n取何值時,Sn取得最大值,并求出它
2025-03-25 02:51
【總結(jié)】直線與圓二、弦長公式:直線與二次曲線相交所得的弦長1直線具有斜率,直線與二次曲線的兩個交點坐標(biāo)分別為,則它的弦長注:實質(zhì)上是由兩點間距離公式推導(dǎo)出來的,只是用了交點坐標(biāo)設(shè)而不求的技巧而已(因為,運用韋達定理來進行計算.2當(dāng)直線斜率不存在是,則.三、過兩圓C1:x2+y2+D1x+E1y+F1=0和C2:x2+y2+D2x+E2y+F2=
2025-03-25 06:29
【總結(jié)】......圓錐曲線的最值、范圍問題與圓錐曲線有關(guān)的范圍、最值問題,各種題型都有,既有對圓錐曲線的性質(zhì)、曲線與方程關(guān)系的研究,又對最值范圍問題有所青睞,它能綜合應(yīng)用函數(shù)、三角、不等式等有關(guān)知識,緊緊抓住圓錐曲線的定義進行轉(zhuǎn)
【總結(jié)】......圓錐曲線中的最值問題一、圓錐曲線定義、性質(zhì)1.(文)已知F是橢圓+=1的一個焦點,AB為過其中心的一條弦,則△ABF的面積最大值為( )A.6B.15C.2
2025-03-25 00:03
【總結(jié)】2014年幾何圖形中的最值問題谷瑞林幾何圖形中的最值問題引言:最值問題可以分為最大值和最小值。在初中包含三個方面的問題::①二次函數(shù)有最大值和最小值;②一次函數(shù)中有取值范圍時有最大值和最小值。:①如x≤7,最大值是7;②如x≥5,最小值是5.:①兩點之間線段線段最短。②直線外一點向直線上任一點連線中垂線段最短,③在三角形中,兩邊之和大于第三邊,兩邊之差小于第三邊。一、
2025-03-24 12:12
【總結(jié)】......典型中考題(有關(guān)二次函數(shù)的最值)屠園實驗周前猛一、選擇題1.已知二次函數(shù)y=a(x-1)2++b有最小值–1,則a與b之間的大小關(guān)()A.ab=b
2025-03-24 06:26