【總結(jié)】定積分的概念一、引入定積分概念的實(shí)例二、定積分的概念三、定積分的幾何意義四、定積分的性質(zhì)一、引入定積分概念的實(shí)例引例1曲邊梯形的面積曲邊梯形設(shè)函數(shù)f(x)在區(qū)間[a,b](ab)上非負(fù)且連續(xù),由曲線y=f(x),直線x=a,x=b及x軸圍成的圖形稱為曲邊梯形,其中曲線弧y=f(x)稱為曲
2024-11-03 20:04
【總結(jié)】第6章定積分§定積分概念與性質(zhì)§微積分基本公式§定積分的換元積分法和分部積分法§定積分的應(yīng)用§反常積分初步目錄上一頁目錄下一頁退出回顧曲邊梯形求面積的問題abxyo§定積分的應(yīng)用定積分的
2025-04-29 00:58
【總結(jié)】定理假設(shè)(1))(xf在],[ba上連續(xù);(2)函數(shù))(tx??在],[??上是單值的且有連續(xù)導(dǎo)數(shù);(3)當(dāng)t在區(qū)間],[??上變化時(shí),)(tx??的值在],[ba上變化,且a?)(??、b?)(??,則有dtttfdxxfba????????)()]([)(.
2025-01-14 14:36
【總結(jié)】定積分的分部積分公式推導(dǎo)一、分部積分公式例1◆定積分的分部積分法解解原式原式已積出的部分要求值定積分的分部積分法已積出的部分要求值解解原式原式解解原式原式所以所以分部積分過程:解(4)
2025-04-29 00:02
【總結(jié)】定積分的概念abxyo??A原型(求曲邊梯形的面積)一、抽象定積分概念現(xiàn)實(shí)原型)(xfy?曲邊梯形由連續(xù)曲線軸與兩直線,所圍成.()(()0),yfxfxxxaxb????考察下列圖形由哪些曲邊圍成.A20
2025-01-14 14:52
【總結(jié)】引言從歷史上說,定積分的概念產(chǎn)生于計(jì)算平面上封閉曲線圍成區(qū)域的面積.為了計(jì)算計(jì)算這類區(qū)域的面積,最后把問題歸結(jié)為計(jì)算具有特定結(jié)構(gòu)的和式的極限.人們?cè)趯?shí)踐中逐漸認(rèn)識(shí)到這種特定結(jié)構(gòu)的和式的極限,不僅是計(jì)算區(qū)域面積的數(shù)學(xué)工具,而且也是計(jì)算其它許多實(shí)際問題(如變力作功、水的壓力、立體體積等)的數(shù)學(xué)工具.因此,無論在理
2025-05-12 08:06
【總結(jié)】(AdvancedMathematics)?CSMyzx0?P定積分的應(yīng)用習(xí)題課(三)第三章一元函數(shù)積分學(xué)及應(yīng)用l平面圖形的面積l體積l弧長(zhǎng)定積分的應(yīng)用一復(fù)習(xí)定積分的應(yīng)用定積分的應(yīng)用1、定積分應(yīng)用的常用公式(1)平面圖形的面積直角坐標(biāo)情形返回定積分的應(yīng)用若
2025-04-29 00:14
【總結(jié)】一、變速直線運(yùn)動(dòng)中位置函數(shù)與速度函數(shù)之間的聯(lián)系第二節(jié)第二節(jié)微積分基本定理微積分基本定理積分的基本原理:微積分基本定理,由艾薩克·牛頓和戈特弗里德·威廉·萊布尼茨在十七世紀(jì)分別獨(dú)自確立。微積分基本定理將微分和積分聯(lián)系在一起,這樣,通過找出一個(gè)函數(shù)的原函數(shù),就可以方便地計(jì)算它在一個(gè)區(qū)間上的積分。積分和導(dǎo)數(shù)已
2025-04-29 00:05
【總結(jié)】知識(shí)精要基礎(chǔ)訓(xùn)練典例示范誤區(qū)警示方法歸納考點(diǎn)測(cè)評(píng)例題備選§定積分題型一題型二題型三題型一題型二題型三題型一題型二題型三題型一題型二題型三題型一題型二題型三題型一題
2024-12-08 04:04
【總結(jié)】公開課二:定積分理論一、實(shí)際應(yīng)用背景1、運(yùn)動(dòng)問題—設(shè)物體運(yùn)動(dòng)速度為)(tvv?,求],[bat?上物體走過的路程。(1)取btttan??????10,],[],[],[],[12110nnttttttba??????,其中)1(1nitttiii??????;(2)任取)1](,[1nixxii
2025-08-11 16:32
【總結(jié)】abxyo??A曲邊梯形由連續(xù)曲線實(shí)例1(求曲邊梯形的面積))(xfy?)0)((?xf、x軸與兩條直線ax?、bx?所圍成.第五節(jié)定積分一、問題的提出)(xfy?abxyoabxyo用矩形面積近似取代曲邊梯形面積顯然,小矩形越多,矩形總面
2025-07-22 11:11
【總結(jié)】在幾何中的應(yīng)用1、定積分的幾何意義:Oxyaby?f(x)x=a、x=b與x軸所圍成的曲邊梯形的面積。xyOaby?f(x)當(dāng)f(x)?0時(shí),由y?f(x)、x?a、x?b與x軸所圍成的曲邊梯形位于x軸的下方,一、復(fù)習(xí)引入鞏固練習(xí)利用定積分的幾何意義
2025-04-29 01:46
【總結(jié)】導(dǎo)數(shù)與定積分總結(jié)知識(shí)點(diǎn)總結(jié):(一)對(duì)導(dǎo)數(shù)定義的理解;A:平均變化率瞬時(shí)變化率B:割線斜率切線斜率C:其實(shí)質(zhì)是從點(diǎn)x附近的平均變化率到點(diǎn)x的瞬時(shí)變化率;還要注意函數(shù)值的變化要與自變量的變化一致(1)設(shè)f(x)為可導(dǎo)函數(shù),則的為
2025-04-29 00:12
【總結(jié)】第四節(jié)定積分與微積分基本定理(理)重點(diǎn)難點(diǎn)重點(diǎn):了解定積分的概念,能用定義法求簡(jiǎn)單的定積分,用微積分基本定理求簡(jiǎn)單的定積分.難點(diǎn):用定義求定積分知識(shí)歸納1.定積分的定義如果函數(shù)f(x)在區(qū)間[a,b]上連續(xù),用分點(diǎn)a=x0x1&l
2024-12-07 18:51
【總結(jié)】1引例:一塊長(zhǎng)方形的金屬板,四個(gè)頂點(diǎn)的坐標(biāo)是(1,1),(5,1),(1,3),(5,3).在坐標(biāo)原點(diǎn)處有一個(gè)火焰,它使金屬板受熱.假定板上任意一點(diǎn)處的溫度與該點(diǎn)到原點(diǎn)的距離成反比.在(3,2)處有一個(gè)螞蟻,問這只螞蟻應(yīng)沿什么方向爬行才能最快到達(dá)較涼快的地點(diǎn)?問題的實(shí)質(zhì):應(yīng)沿由熱變冷變化最驟烈的方向(即梯度方向)爬行.第七節(jié)方
2025-08-05 18:34