【總結(jié)】哈五中問題:如圖,A、B、C三個村莊合建一所學校,要求校址P點距離三個村莊都相等.請你幫助確定校址.???ABCABMNC??PMN?CABQ?ABMNP.Q.C?線段垂直平分線上的點和這條線
2024-11-09 05:26
【總結(jié)】線段的垂直平分線關(guān)店中學繆培威海市政府為了方便居民的生活,計劃在三個住宅小區(qū)A、B、C之間修建一個購物中心,試問,該購物中心應(yīng)建于何處,才能使得它到三個小區(qū)的距離相等。ABC實際問題1煙威高速公路實際問題2在煙威高速公路L的同側(cè),有兩個化工廠
2024-11-24 15:53
【總結(jié)】九年級數(shù)學(上冊)第一章證明(二)(2)三角形的垂心陽泉市義井中學高鐵牛駛向勝利的彼岸線段的垂直平分線的作法?已知:線段AB,如圖.?求作:線段AB的垂直平分線.?作法:?用尺規(guī)作線段的垂直平分線.?A和B為圓心,以大于AB/2長為半徑作弧,兩弧交于點C和D.AB
2024-11-30 02:44
【總結(jié)】授南崗區(qū)第30屆教學百花獎名師評選數(shù)學科作課教案1三三角角形形的的角角平平分分線線復復習習課課——常常見見輔輔助助線線的的引引法法教學目標:知識與技能:1、理解三角形的角平分線的相關(guān)性質(zhì)2、掌握以三角形的
2024-11-22 00:39
【總結(jié)】線段垂直平分線與角平分線教學目標線段垂直平分線與角平分線概念與定理以及逆定理的理解與應(yīng)用重點、難點線段垂直平分線與角平分線定理與逆定理的理解與應(yīng)用考點及考試要求定理與逆定理的應(yīng)用教學內(nèi)容知識要點詳解1、線段垂直平分線的性質(zhì)(1)垂直平分線性質(zhì)定理:線段垂直平分線上的點到這條線段
2024-12-08 03:24
【總結(jié)】線段的垂直平分線第一章三角形的證明第2課時三角形三邊的垂直平分線及作圖,能夠運用其解決實際問題.(重點).學習目標導入新課復習引入ABCD..性質(zhì):線段垂直平分線上的點到線段兩端的距離相等.判定:到一條線段兩個端點距離相等
2025-06-15 03:56
【總結(jié)】課題名稱:利用角平分線--構(gòu)造全等三角形教師姓名:史月華學校:延慶縣張山營學校編號:教師年齡:45教齡:21職稱:中學一級教學背景分析(一)教學內(nèi)容的功能和地位是在八年級學習了全等判定及性質(zhì),角平分線的概念和直角三角形全等的基礎(chǔ)上進行教學的。同時角平分線的性質(zhì)為證
2025-04-16 22:25
【總結(jié)】典型例題例1.如圖,已知:在中,,,BD平分交AC于D.求證:D在AB的垂直平分線上.分析:根據(jù)線段垂直平分線的逆定理,欲證D在AB的垂直平分線上,只需證明即可.證明:∵,(已知),∴(的兩個銳角互余)又∵BD平分(已知)∴.∴(等角對等邊)∴D在AB的垂直平分線上(和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上).例2.如圖,已知
2025-03-25 07:09
【總結(jié)】線段的垂直平分線教學設(shè)計教學內(nèi)容分析:這節(jié)課是把電子白板與幾何畫板結(jié)合的一節(jié)新授課。線段的垂直平分線是對前一課時關(guān)于軸對稱圖形性質(zhì)的再認識,又是今后幾何作圖、證明、計算的基礎(chǔ)。學習過程中滲透的轉(zhuǎn)化、探索、歸納等數(shù)學思想方法對學生今后的數(shù)學學習也有重要的意義。學習線段垂直平分線相關(guān)知識是為學生創(chuàng)造了一次探究的機會,是學習幾何學的一次磨練。課題:線段的垂直平分線學習目標
2025-04-17 08:11
【總結(jié)】第一章三角形的證明線段的垂直平分線第2課時線段垂直平分線的應(yīng)用1課堂講解?三角形三邊的垂直平分線?線段垂直平分線的作圖及應(yīng)用2課時流程逐點導講練課堂小結(jié)作業(yè)提升線段的垂直平分線的性質(zhì)與判定的內(nèi)容是什么?復習回顧1知識點三角形三邊的垂直平分
2024-12-28 01:26
【總結(jié)】線段的垂直平分線(二)名山街道中學八年級數(shù)學備課組(二)學習目標1.會進行線段垂直平分線的尺規(guī)作圖。2.能作出軸對稱圖形的對稱軸。一、新課導入有時我們感覺兩個圖形是軸對稱的,如何驗證呢?不折疊圖形,你能比較準確地作出軸對稱圖形的對稱軸嗎?二、自學教材教材第62—64頁止。?
2024-09-30 12:31
【總結(jié)】普陀區(qū)政府為了方便居民的生活,計劃在三個住宅小區(qū)A、B、C之間修建一個購物中心,請你規(guī)劃一下,該購物中心應(yīng)建于何處,才能使它到三個小區(qū)的距離相等?ABC問題?ABPMNPA=PBC直線MN⊥AB,垂足為C,且AC=CB.P1P1A=P1B……
2025-05-14 03:49
【總結(jié)】線段垂直平分線和角的平分線部分典型習題1、(2020·重慶)△ABC中,AB=AC,∠BAC=100°,兩腰AB、AC的垂直平分線交于點P,則()A、點P在△ABC內(nèi)B、點P在△ABC底邊上C、點P在△ABC外D、點P的位置與△ABC的
2024-11-11 13:15
【總結(jié)】線段的垂直平分線第一章三角形的證明第1課時線段的垂直平分線;線段垂直平分線的性質(zhì)定理及逆定理;(重點)算.(難點)學習目標導入新課問題引入某區(qū)政府為了方便居民的生活,計劃在三個住宅小區(qū)A、B、C之間修建一個購物中心,試問該購物中心應(yīng)建于何處,才能使得它到三個小區(qū)的距離
2025-06-20 05:35
【總結(jié)】第一篇:三角形內(nèi)角平分線定理 三角形內(nèi)角平分線定理:三角形任意兩邊之比等于它們夾角的平分線分對邊之比。已知:如圖8-4甲所示,AD是△ABC的內(nèi)角∠BAC的平分線。 求證:BA/AC=BD/DC;...
2024-10-24 20:30