【總結(jié)】題目部分,(卷面共有100題,,各大題標有題量和總分)一、選擇(16小題,)(2分)[1](3分)[2]二重積分(其中D:0≤y≤x2,0≤x≤1)的值為(A)(B)(C)(D)答
2025-03-24 06:31
【總結(jié)】如果積分區(qū)域為:,bxa??).()(21xyx????其中函數(shù)、在區(qū)間上連續(xù).)(1x?)(2x?],[ba一、利用直角坐標系計算二重積分[X-型])(2xy??abD)(1xy??Dba)(2xy??)(1xy??為曲頂
2025-01-18 17:12
【總結(jié)】一、利用直角坐標系計算二重積分二、小結(jié)思考題第二節(jié)二重積分的計算法(1)如果積分區(qū)域為:,bxa??).()(21xyx????其中函數(shù)、在區(qū)間上連續(xù).)(1x?)(2x?],[ba一、利用直角坐標系(rightanglecoordinatesys
2025-08-21 12:45
【總結(jié)】第二節(jié)二重積分的計算一、二重積分在直角坐標系下的計算二、二重積分在極坐標系下的計算一、二重積分在直角坐標系下的計算二重積分的計算主要是化為兩次定積分計算,簡稱為化為二次積分或累次積分.下面從二重積分的幾何意義來引出這種計算方法.在直角坐標系中,如果用平行于兩個坐標軸的兩組直線段,將區(qū)域D分割成n個小塊
2025-07-20 20:21
【總結(jié)】第二節(jié)、二重積分的性質(zhì)假設以下各積分存在性質(zhì)1?????DDdyxfkdyxkf??),(),(k為常數(shù)性質(zhì)2?????????DDDdyxgDdyxfdyxgyxf???),(),()],(),([性質(zhì)3(可加性)???2121,DDDDD??且若(除分界線)??????
2024-10-11 12:29
【總結(jié)】一、問題的提出二、二重積分的概念三、二重積分的性質(zhì)四、小結(jié)思考題第一節(jié)二重積分的概念與性質(zhì)柱體(cylindricalbody)體積=底面積×高特點:平頂.曲頂柱體體積=?特點:曲頂(curvedvertexsurface).),(yxfz?D1.曲頂柱體的體積
2025-08-21 12:46
【總結(jié)】機動目錄上頁下頁返回結(jié)束高等數(shù)學A電子教案第二節(jié)一、利用直角坐標計算二重積分二重積分的計算法二、利用極坐標計算二重積分三、二重積分的換元法第十章機動目錄上頁下頁返回結(jié)束高等數(shù)學A電子教案xbad]
2025-05-01 18:15
【總結(jié)】1第七章:二重積分一、基本概念及結(jié)論(1)曲頂柱體的體積)]0),([),(??yxfyxfz曲頂柱體是指它的底面是在平面上的有界閉區(qū)域,它的側(cè)面是以的邊界為準線,母線平行于軸的柱面,它的頂是連續(xù)曲面xoyDDzxyzo),(y
2025-01-19 15:11
【總結(jié)】如果積分區(qū)域D為:),()(21xyx????其中函數(shù)、在區(qū)間上連續(xù).)(1x?)(2x?],[ba第二節(jié)二重積分的計算一、利用直角坐標計算二重積分[X-型區(qū)域])(2xy??abD)(1xy??Dba)(2xy??)(
2024-12-08 01:13
【總結(jié)】第三節(jié)二重積分的應用一、曲面的面積二、平面薄片的重心三、平面薄片的轉(zhuǎn)動慣量四、平面薄片對質(zhì)點的引力把定積分的元素法推廣到二重積分的應用中:???DdxdyyxfUdUUdyxfdyxdyxfdDUDDU.),(),(.),()
2025-07-20 17:41
【總結(jié)】1第十章重積分一元函數(shù)積分學多元函數(shù)積分學重積分曲線積分曲面積分2三、二重積分的性質(zhì)§二重積分的概念與性質(zhì)一、引例二、二重積分的定義與可積性四、曲頂柱體體積的計算3解法:類似定積分解決問題的思想:一、引例給定曲頂柱體
2025-01-19 14:43
【總結(jié)】第九節(jié)二重積分的計算(一)在直角坐標系下計算二重積分如果積分區(qū)域為:,bxa??).()(21xyx????其中函數(shù)、在區(qū)間上連續(xù).)(1x?)(2x?],[ba在直角坐標系下計算二重積分[X-型]
2025-08-23 08:49
【總結(jié)】第二節(jié)二重積分的計算法教學目的:熟練掌握二重積分的計算方法教學重點:利用直角坐標和極坐標計算二重積分教學難點:化二重積分為二次積分的定限問題教學內(nèi)容:利用二重積分的定義來計算二重積分顯然是不實際的,二重積分的計算是通過兩個定積分的計算(即二次積分)來實現(xiàn)的.一、利用直角坐標計算二重積分我們用幾何觀點來討論二重積分的計算問題.討論中,我們假定;假定積分區(qū)域
2025-04-07 07:56
【總結(jié)】極坐標系下二重積分的計算.??drdrd????Ddxdyyxf),(一、極坐標系下二重積分的一般公式1、面積元素.?drdrdxdy??或i???i??ii??????iirrr???AoDir?.)sin,cos(???Drdrdrrf???2、一般公式
2024-12-08 10:11
【總結(jié)】§二重積分的計算方法一、利用直角坐標計算二重積分在直角坐標系下用平行于坐標軸的直線網(wǎng)來劃分區(qū)域D,??????DDdxdyyxfdyxf),(),(dxdyd??xyoD則面積元素為xoabxdxx?.)(??badxxAVRR?xyo?xxyo
2025-01-12 12:17