【導讀】不同的交點.求證:這圓錐曲線一定是雙曲線,對于同一雙曲線,l截得圓弧的度數(shù)為定值.若l交圓于S、T點,y3、以坐標軸為對稱軸的等軸雙曲線的一條準線方程為求雙曲線方程。到雙曲線左準線的距離。焦點,求證直線FM垂直于這條漸近線。babyax相應的焦點為F(c,0),頂點所張的兩角互補,求k。半角即互余,再利用三角公式就可以求k出的值。兩焦半徑所夾的角,這稱為雙曲線的光學性質。babyax例1、雙曲線右支上存在與右焦
【總結】平面內到兩定點F1、F2距離之和為常數(shù)2a(①)的點的軌跡叫橢圓.有|PF1|+|PF2|=2a.在定義中,當②時,表示線段F1F2;當③時,不表示任何圖形.2a>|F1F2|2a=|F1F2|2a<
2025-08-09 15:25
【總結】圓錐曲線復習(二)數(shù)學高二年級例1已知雙曲線的中心在原點,且一個焦點為F,直線與其相交于M、N兩點,MN中點的橫坐標為,則此雙曲線的方程是______.解:解得所求雙曲線方程例2橢圓
2024-11-06 23:19
【總結】圓錐曲線復習(一)數(shù)學高二年級例1已知圓C:(x-a)2+(y-2)2=4及直線l:x-y+3=0,當直線l被圓C截得的弦長為時,則a=________.解出解:由平面幾何知:圓心到直線的距離為1,由點到直線的距離公式得CBAD例2已知拋物線
2024-11-06 19:11
【總結】關于圓錐曲線的中點弦問題直線與圓錐曲線相交所得弦中點問題,是解析幾何中的重要內容之一,也是高考的一個熱點問題。這類問題一般有以下三種類型:(1)求中點弦所在直線方程問題;(2)求弦中點的軌跡方程問題;(3)求弦中點的坐標問題。其解法有代點相減法、設而不求法、參數(shù)法、待定系數(shù)法及中心對稱變換法等。一、求中點弦所在直線方程問題例1、過橢圓內一點M(2,1)引一條弦,使弦被
2025-07-26 08:15
【總結】圓錐曲線:圓、橢圓、拋物線,雙曲線。拋物線及其標準方程二次函數(shù))0(2????acbxaxy的圖象(示意圖)?拋物線xyoxoy同學們生活學習中見過拋物線的實例有哪些?噴泉探照燈的燈面平面內與一個定點F和一條定直線l(l不過點F)的距離相等的點
2025-10-08 18:08
【總結】1圓錐曲線橢圓雙曲線拋物線定義標準方程幾何性質直線與圓錐曲線的位置關系一、知識點框架2雙曲線的定義:1212||||||2,(02||)MFMFaaFF????橢圓的定義:|)|2(,2||||2
2025-08-15 23:07
【總結】直線與圓錐曲線的位置關系(1)X蚌埠五中李開紅直線與圓錐曲線位置關系的綜合題在高考中多以高檔題、壓軸題出現(xiàn),主要涉及位置關系的判定,弦長問題、最值問題、對稱問題、軌跡問題等。突出考查了數(shù)形結合、分類討論、函數(shù)與方程、等價轉化等數(shù)學思想方法,對考生分析問題和解決問題的能力、計算能力的要求較高,起到了拉開考生“檔次”、有
2025-10-08 13:47
【總結】高三《圓錐曲線》單元測試一、選擇題:(共12小題,每小題5分共60分)1.已知焦點在x軸上的橢圓的離心率為,它的長軸長等于圓的半徑,則橢圓的標準方程是 A. B. C. D.2.拋物線的焦點為F,P為其上一點,O為坐標原點,若為等腰三角形,則這樣的點P的個數(shù)為( ?。〢.2 B.3 C.4 D.63.已知向量若與的夾角為,
2025-07-24 20:00
【總結】第九章 求曲線(或直線)方程解析幾何求曲線(或直線)的方程一、基礎知識:1、求曲線(或直線)方程的思考方向大體有兩種,一個方向是題目中含幾何意義的條件較多(例如斜率,焦距,半軸長,半徑等),那么可以考慮利用幾何意義求出曲線方程中的要素的值,從而按定義確定方程;另一個方向是
2025-07-25 00:15
【總結】直線與圓錐曲線的位置關系問題是圓錐曲線的重點和難點,也是每年高考的熱點,其解答過程具有很強的綜合性、復雜性和規(guī)律性。解答此類問題需要把握弦長公式,中點坐標公式,圓錐曲線的簡單幾何性質,韋達定理的運用,以及轉化與化歸思想及其應用.已知直線和圓錐曲線的方程,如何判斷直線與圓錐曲線的位置關系?直線與
2025-07-23 12:45
【總結】義龍一中2015-2016學年度期末圓錐曲線復習卷學校:___________姓名:___________班級:___________考號:___________一、選擇題(每小題5分,一共60分)1.已知橢圓的一個焦點為F(0,1),離心率,則該橢圓的標準方程為()A.B.C.D.2.已知橢圓的長軸在軸上,且焦距為4
2025-08-05 04:46
【總結】2009屆廣東省(課改區(qū))各地市期末數(shù)學分類試題《直線與圓及其方程》、《圓錐曲線與方程》部分《直線與圓及其方程》、《圓錐曲線與方程》一、選擇題1.【廣東韶關·文】BA.1B.C.D.2.【潮州·理科】8、(文科10)已知點是圓:內一點,直線是以為中點的弦所在的直線,若直線的
2025-07-22 19:44
【總結】直線與圓錐曲線的位置關系焦半徑公式02xpAF??01exaAF??02exaAF??橢圓雙曲線aexAF??01拋物線02xpAF??02ypAF??02ypAF??特別地,拋物線的焦點弦長為21xxpAB???)(21xxpAB???21yypAB???)(
2025-08-05 18:28
【總結】一、求軌跡的常用方法:1、直接法(五步法、定義法)2、間接法(代入法、參數(shù)法)二、求軌跡方程的注意事項:一、求軌跡的常用方法:五步法的關鍵:找出限制(約束)動點運動所滿足的條件。定義法:分析條件,判斷軌跡是什么曲線,從而利用曲線的定義或利用其一般形式采用待定系數(shù)法求動點的軌跡方程。
2024-11-06 15:49
【總結】(§文)(§)圓錐曲線的綜合問題知識要點梳理解析幾何是聯(lián)系初等數(shù)學與高等數(shù)學的紐帶,它本身側重于形象思維、推理運算和數(shù)形結合,綜合了代數(shù)、三角、幾何、向量等知識.圓錐曲線與方程是中學數(shù)學的重點和難點,它可以和中學數(shù)學中的其他章節(jié)知識進行交匯,充分體現(xiàn)了中學中的各種數(shù)學思想與數(shù)學技能。無論是基礎題還是難題都可以將分析問題與解決問題的能力淋漓盡致地反映出來。因
2025-03-24 04:06