【導讀】程是y=2,則a的值為_____.點,則三角形MNF2的周長為______.點F1的距離等于9,求P到F2的距離.例6已知雙曲線虛軸的一個端點為M,雙曲線的離心率為_____.于1,則半徑r的取值范圍是_____.上恰有3個點到直線的距離為1.合,則拋物線的焦點坐標為_____.例10橢圓的半焦距為c,
【總結】圓錐曲線中的定點問題明對任意情況都成立找到定點,再證方法三:通過特殊位置的值求出方法二:通過計算可以)則直線過(例如的關系與方法一:找到設直線為基本思想:.,022,bkbbkbkxy????【例1-1】已知拋物線C:y2=2px(p0)的焦點F(1,0),O為坐
2025-08-05 04:45
【總結】知識指要橢圓注1:總有ab0,c2=a2-b2xOyF1F2MxOyF1F2M注2:判斷橢圓標準方程的焦點在哪個軸上的準則:焦點在分母大的那個軸上注3:橢圓上到焦點的距離最大和最小的點是橢圓長軸的兩個端點知識指要橢圓1、橢圓第
2025-09-25 20:45
【總結】直線與圓錐曲線的位置關系焦半徑公式02xpAF??01exaAF??02exaAF??橢圓雙曲線aexAF??01拋物線02xpAF??02ypAF??02ypAF??特別地,拋物線的焦點弦長為21xxpAB???)(21xxpAB???21yypAB???)(
2025-08-05 18:28
【總結】圓錐曲線―概念、方法、題型、及應試技巧總結:(1)第一定義中要重視“括號”內(nèi)的限制條件:橢圓中,與兩個定點F1,F(xiàn)2的距離的和等于常數(shù)2a,且此常數(shù)2a一定要大于21FF,當常數(shù)等于21FF時,軌跡是線段F1F2,當常數(shù)小于21FF時,無軌跡;雙曲線中,與兩定點F1,F(xiàn)2的距離的差的絕對值等
2025-01-08 20:52
【總結】......圓錐曲線綜合復習題精選.已知圓與拋物線的準線相切,則p的值為 C. .已知圓與拋物線的準線相切,則m=(A)±2(B)(C)(D)±
2025-04-17 00:20
【總結】圓錐曲線小結復習目標1)掌握橢圓的定義,標準方程和橢圓的幾何性質2)掌握雙曲線的定義,標準方程和雙曲線的幾何性質3)掌握拋物線的定義,標準方程和拋物線的幾何性質4)能夠根據(jù)條件利用工具畫圓錐曲線的圖形,并了解圓錐曲線的初步應用。(1)求長軸與短軸之和為20,焦距為的橢圓的標準方程
2024-11-12 01:35
【總結】2.5圓錐曲線的統(tǒng)一定義學習目標.2.能用坐標法解決一些與圓錐曲線有關的簡單幾何問題.課堂互動講練知能優(yōu)化訓練2.5課前自主學案課前自主學案溫故夯基1.平面內(nèi)到兩個定點F1,F(xiàn)2的距離的和等于常數(shù)(大于F1F2)的點的軌跡叫做____.2.平面內(nèi)與兩個定點F1、F2的距離的差
2025-07-18 18:16
【總結】2022屆高考數(shù)學復習強化雙基系列課件77《圓錐曲線-軌跡方程》基本知識概要:一、求軌跡的一般方法:1.直接法:如果動點運動的條件就是一些幾何量的等量關系,這些條件簡單明確,易于表述成含x,y的等式,就得到軌跡方程,這種方法稱之為直接法。用直接法求動點軌跡一般有建系,設點,列式,化簡,證明五個步驟,最后的證明可以省
2025-07-24 10:09
【總結】圓錐曲線定義在高考中的應用高二數(shù)學高惠玲2020年10月24日復習?橢圓第一定義:?雙曲線第一定義:第一定義第二定義?圓錐曲線統(tǒng)一定義:平面內(nèi)到定點的距離與到定直線的距離之比是常數(shù)e的點的軌跡當01時
2024-11-12 18:53
【總結】圓錐曲線習題課1.直線與圓錐曲線的位置關系:用△判定。2.中點弦問題,常用點差法解決。3.對于垂直問題,常用到x1x2+y1y2=0。4.對于分點問題,可利用向量關系列出方程。5.解題工具有:韋達定理、弦長公式等。復習回顧:當0°≤θ≤180°時,方程x2cosθ+
2025-08-05 04:08
【總結】2020屆高考數(shù)學二輪復習系列課件24《圓錐曲線》圓錐曲線與平面向量考試內(nèi)容:橢圓、雙曲線、拋物線的定義、標準方程、幾何性質以及直線與圓錐曲線的位置關系,平面向量的概念,向量的坐標運算.高考熱點:圓錐曲線與平面向量的綜合.熱點題型1:直線與圓錐曲線的位置關系新題型分類例析
2024-11-11 02:54
【總結】知識結構?????圓錐曲線橢圓雙曲線拋物線標準方程幾何性質標準方程幾何性質標準方程幾何性質第二定義第二定義統(tǒng)一定義綜合應用橢圓雙曲線拋物線幾何條件與兩個定點的距離的和等于常數(shù)
【總結】山東省嘉祥縣第四中學曾慶坤一、復習圓錐曲線的定義1、橢圓的第一定義與第二定義2、雙曲線的第一定義與第二定義3、拋物線的定義二、經(jīng)典回顧1、已知動圓M和圓內(nèi)切,并和圓外切,動圓圓心M的軌跡方程為
2024-11-06 14:25
【總結】2022年01月圓的推廣飛船軌道為什么斜著切割一個圓柱得到的截線是一個橢圓呢?有關圓的某些定理在圓錐曲線中的推廣是什么樣的?圓錐曲線在大自然的基本結構中扮演著怎樣的角色?斜切圓柱“數(shù)學是人類文化的重要組成部分……應適當反映數(shù)學的歷史、應用和發(fā)展趨勢,數(shù)學
2025-01-19 01:18
【總結】橢圓中的相關問題一、橢圓中的最值問題:,內(nèi)有一點,為橢圓上任意一點,若要求最小,則這最小值是()A.B.C.D.,,為橢圓上任意一點,若要求最小,則這最小值是()A.B.C.D.3.橢圓上任一點橢圓到兩焦點橢圓,的距離之積的最大值是,最小值是。4.設,則的
2025-07-21 11:38