【導讀】的圖象(示意圖)?見過拋物線的實例有哪些?定直線L叫做拋物線的準線.平面內(nèi)若動點滿足則點M的軌跡。其軌跡是過點F且垂直于L的直線。設動點坐標為(x,y);px)0,32(準線方程為:焦點坐標為:。程是)已知拋物線的準線方(。求拋物線的標準方程。拋物線的標準方程與其焦點、準線。注重數(shù)形結合的思想。求軌跡方程方法步驟
【總結】橢圓、雙曲線、拋物線相關知識點總結一、橢圓的標準方程及其幾何性質(zhì)橢圓的定義:我們把平面內(nèi)與兩個定點的距離的和等于常數(shù)的點的軌跡叫做橢圓。符號語言:將定義中的常數(shù)記為,則:①.當時,點的軌跡是橢圓②.當時,點的軌跡是線段③.當時,點的軌跡不存在標準方程圖形性質(zhì)焦點坐標,,焦
2025-06-24 23:31
【總結】圓錐曲線基本知識知識歸納?橢圓的定義?橢圓的圖形及方程?橢圓中的基本元素單擊進入例題選講?橢圓定義的應用?待定系數(shù)法求橢圓方程?直線與橢圓的位置關系?有關橢圓的最值問題單擊進入橢圓定義的應用?例一、設點A(-2,2),F(xiàn)為橢圓3x+4y=48的
2025-08-04 14:02
【總結】2020屆高考數(shù)學復習強化雙基系列課件73《圓錐曲線-橢圓》一.基本知識概要1橢圓的兩種定義:①平面內(nèi)與兩定點F1,F(xiàn)2的距離的和等于定長的點的軌跡,即點集M={P||PF1|+|PF2|=2a,2a>|F1F2|};(時為線段,無軌跡)。其中兩定
2024-11-12 01:26
【總結】圓錐曲線?解析幾何是在坐標系的基礎上,用坐標表示點、用方程表示點的軌跡——曲線(包括直線)。通過研究方程的性質(zhì),進一步研究曲線的性質(zhì)。也可以說,解析幾何是用代數(shù)的方法研究幾何問題的一門數(shù)學學科。本章是平面解析幾何內(nèi)容中的圓錐曲線部分,是在學生已掌握平面幾何知識與平面直角坐標系、平面向量、兩點距離公式及基本初等函數(shù)、直線與圓的方程等知識的基礎上
2024-11-21 02:39
【總結】第九章 求曲線(或直線)方程解析幾何求曲線(或直線)的方程一、基礎知識:1、求曲線(或直線)方程的思考方向大體有兩種,一個方向是題目中含幾何意義的條件較多(例如斜率,焦距,半軸長,半徑等),那么可以考慮利用幾何意義求出曲線方程中的要素的值,從而按定義確定方程;另一個方向是
2025-07-25 00:15
【總結】......圓錐曲線橢圓專項訓練【例題精選】:例1求下列橢圓的標準方程: (1)與橢圓有相同焦點,過點; (2)一個焦點為(0,1)長軸和短軸的長度之比為t; (3)兩焦點與短軸一個端點為正三
2025-06-22 15:55
【總結】......圓錐曲線習題——雙曲線1.如果雙曲線=1上一點P到雙曲線右焦點的距離是2,那么點P到y(tǒng)軸的距離是()(A) (B) (C) (D)2.已知雙曲線C∶>0,b>0),以C的右焦點為圓心且與C的漸近線相切的圓的半
2025-06-23 15:22
【總結】.F2F1yox.xF1F20y..橢圓、雙曲線的方程(各取一種情況)、性質(zhì)的對比.橢圓雙曲線幾何條件標準方程頂點坐標對稱軸焦點坐標離心率準線方程漸近線方程與兩個定點的距離的和等于常數(shù).與兩個定點的距離的差的絕對值等于常數(shù).焦點
2024-11-10 22:30
【總結】1.【2017課標1,理10】已知F為拋物線C:y2=4x的焦點,過F作兩條互相垂直的直線l1,l2,直線l1與C交于A、B兩點,直線l2與C交于D、E兩點,則|AB|+|DE|的最小值為A.16B.14C.12D.10【答案】A2.【2017課標II,理9】若雙曲線C:221xya
2024-11-26 00:16
【總結】高三《圓錐曲線》單元測試一、選擇題:(共12小題,每小題5分共60分)1.已知焦點在x軸上的橢圓的離心率為,它的長軸長等于圓的半徑,則橢圓的標準方程是 A. B. C. D.2.拋物線的焦點為F,P為其上一點,O為坐標原點,若為等腰三角形,則這樣的點P的個數(shù)為( ?。〢.2 B.3 C.4 D.63.已知向量若與的夾角為,
2025-07-24 20:00
【總結】圓錐曲線復習課橢圓雙曲線拋物線幾何條件與兩個定點的距離的和等于常數(shù)與兩個定點的距離的差的絕對值等于常數(shù)與一個定點和一條定直線的距離相等標準方程圖形頂點坐標(±a,0),(0,±b)(±a,0)(0,0))0(12
2025-07-25 03:46
【總結】大慶目標教育圓錐曲線一、知識結構在平面直角坐標系中,如果某曲線C(看作適合某種條件的點的集合或軌跡)上的點與一個二元方程f(x,y)=0的實數(shù)解建立了如下的關系:(1)曲線上的點的坐標都是這個方程的解;(2);這條曲線叫做方程的曲線.點與曲線的關系若曲線C的方程是f(x,y)=0,則點P0(x0,y0)在曲線C上f(x0,y0)=0;點P0(x0,y0)
【總結】WORD資料可編輯圓錐曲線橢圓專項訓練【例題精選】:例1求下列橢圓的標準方程: (1)與橢圓有相同焦點,過點; (2)一個焦點為(0,1)長軸和短軸的長度之比為t; (3)兩焦點與短軸一個端點為正三角形的頂點,焦點到橢圓的最短距離為。
【總結】專題五第二講橢圓、雙曲線、拋物線一、選擇題1.(2011·安徽高考)雙曲線2x2-y2=8的實軸長是( )A.2 B.2C.4 D.4解析:雙曲線方程可變?yōu)椋?,所以a2=4,a=2,2a=4.答案:C2.過橢圓+=1(a>b>0)的左焦點F1作x軸的垂線交橢圓于點P,F(xiàn)2為右焦點,若∠F1PF2=60°
2025-01-14 18:39
【總結】WORD資料可編輯圓錐曲線自編講義之基本量要求熟悉圓錐曲線的a、b、c、e、p、漸近線方程、準線方程、焦點坐標等數(shù)據(jù)的幾何意義和相互關系。(2011安徽理2)雙曲線的實軸長是 (A)2 (B)2 (C)4 (D)4【答案】C
2025-04-17 00:20