【總結】橢圓的定義、性質及標準方程1.橢圓的定義:⑴第一定義:平面內(nèi)與兩個定點的距離之和等于常數(shù)(大于)的點的軌跡叫做橢圓。這兩個定點叫做橢圓的焦點,兩焦點的距離叫做橢圓的焦距。⑵第二定義:動點到定點的距離和它到定直線的距離之比等于常數(shù),則動點的軌跡叫做橢圓。定點是橢圓的焦點,定直線叫做橢圓的準線,常數(shù)叫做橢圓的離心率。說明:①若常數(shù)等于,則動點軌跡是線段。②若常數(shù)小于,則動點
2025-08-10 15:59
2025-07-25 00:12
【總結】圓錐曲線復習課橢圓雙曲線拋物線幾何條件與兩個定點的距離的和等于常數(shù)與兩個定點的距離的差的絕對值等于常數(shù)與一個定點和一條定直線的距離相等標準方程圖形頂點坐標(±a,0),(0,±b)(±a,0)(0,0))0(12
2025-07-25 03:46
【總結】圓錐曲線橢圓專項訓練【例題精選】:例1求下列橢圓的標準方程: (1)與橢圓有相同焦點,過點; (2)一個焦點為(0,1)長軸和短軸的長度之比為t; (3)兩焦點與短軸一個端點為正三角形的頂點,焦點到橢圓的最短距離為。 (4) 例2已知橢圓的焦點為。 (1)求橢圓的標準方程; (2)設點P在這個橢圓上,且,求:的值
2025-06-22 14:59
【總結】:★★★★★知能梳理【橢圓】一、橢圓的定義1、橢圓的第一定義:平面內(nèi)一個動點到兩個定點、的距離之和等于常數(shù),這個動點的軌跡叫橢圓。這兩個定點叫橢圓的焦點,兩焦點的距離叫作橢圓的焦距。注意:若,則動點的軌跡為線段;若,則動點的軌跡無圖形。二、橢圓的方程1、橢圓的標準方程(端點為a、b,焦點為c)(1)當焦點在軸上時,橢圓的標準方程:,其中;(2)當焦點
2025-05-31 08:15
【總結】圓錐曲線基本題型總結:提綱:一、定義的應用:1、定義法求標準方程:2、涉及到曲線上的點到焦點距離的問題:3、焦點三角形問題:二、圓錐曲線的標準方程:1、對方程的理解2、求圓錐曲線方程(已經(jīng)性質求方程)3、各種圓錐曲線系的應用:三、圓錐曲線的性質:1、已知方程求性質:2、求離心率的取值或取值范圍3、涉及性質的問題:四、
2025-03-25 00:03
【總結】平面內(nèi)到兩定點F1、F2距離之和為常數(shù)2a(①)的點的軌跡叫橢圓.有|PF1|+|PF2|=2a.在定義中,當②時,表示線段F1F2;當③時,不表示任何圖形.2a>|F1F2|2a=|F1F2|2a<
2025-08-09 15:25
【總結】《圓錐曲線與方程》起始課湖北省荊門市龍泉中學葉俊杰《圓錐曲線與方程》起始課荊門市龍泉中學葉俊杰我們知道,用一個垂直于圓錐的軸的平面截圓錐,截口曲線(截面與圓錐側面的交線)是一個圓.如果改變平面與圓錐軸線的夾角,會得到什么圖形呢?如圖,用一個不垂直于圓錐的軸的平面截圓錐,當截面與圓錐的
2025-08-05 04:44
【總結】橢圓【學習目標】1.掌握橢圓的標準方程,會求橢圓的標準方程;2.掌握橢圓的簡單幾何性質,能運用橢圓的標準方程和幾何性質處理一些簡單的實際問題;3.了解運用曲線的方程研究曲線的幾何性質的思想方法。B級要求【自學評價】橢圓定義:2.橢圓的標準方程:①焦點在x軸上的方程:,②焦點在y軸上的方程:3.橢圓的簡單幾何性質:方程
2025-06-07 23:27
【總結】直線和圓錐曲線??糹an錐曲線經(jīng)